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CONSTANT SIZE CONTROL IN STABILITY ESTIMATES UNDER SOME RESOLVENT
CONDITIONS

N. Yu. Bakaev!
The paper deals with the question of stability of a discrete semigroup under certain resolvent con-

ditions on its generator. The main objective is to examine the behavior of the stability constants as
functions of the constant in the original resolvent estimate.

1. Preliminaries and the main results?. Beyond all manner of doubt, one of the crucial points in the
analysis of discretizations of differential equations i1s that of stability. At the same time, for stability itself it is
most important to settle satisfactorily the question of power boundedness of linear operators. The results in this
direction seem to be far from complete even in the Hilbert space framework (see, e.g., Nagy & Foiag [18]) while,
for practical needs, many authors recently turned to showing power boundedness in Banach norms under some
reasonable conditions. Over the last years, the problem of power boundedness in Banach space settings has been
extensively examined in the literature via using certain resolvent conditions on the operator in question, among
others, the so-called Kreiss and Tadmor conditions and related ones. For such results in the finite-dimensional
case, we mention the work of Kreiss [12], Morton [17], Miller & Strang [16], Tadmor [26, 27], Le Veque &
Trefethen [13], and Spijker [24]. As concerns the infinite-dimensional case, we refer to our work [1, 2, 3, 5],
El-Fallah & Ransford [8], Kalton et al [10], Lubich & Nevanlinna [14], Lyubich [15], Nagy & Zemdanek [19],
Nevanlinna [20, 21, 22], Spijker & Straetemans [25], and Vitse [28, 29] (see also the references therein).

Let X be a Banach space and let B(X) be the algebra of all linear bounded operators on X. Given £ € B(X),
we denote by o(£) and ||£|| the spectrum and norm of £, respectively. For our subsequent needs, we denote as
well, for z € C, r > 0, and ¢ € [0, 7],

D(zr)={ eC:A—z|<r} and By ={AeC: |argA| < ¢}

Also, given a set V C C, we use 8V and V© to denote the boundary of V and the set C\ V, respectively. Apart
from everything else, for 0 < @ < 1 and 0 < o < arcsin a, we define T(a, «) as a subset of C given by

T(a,a) =D(1;a) U (Ea ND(0; d)),

where

2 2

d=cosa — (a” —sin oz)l/2 (1)
(see Figure 1).

Let further 8 € B(X). The family of operators 4", n = 0,1,..., is then called a discrete semigroup. In
what follows of concern will be the problem of estimation of the discrete semigroup 4" in the norm || - || as
well as in some related weighted norms, under some reasonable assumptions on the localization of ¢ () and on
the behavior of the resolvent (A — )~ outside of the spectrum. Note that even having stated the fact that

sup ||[4"|| < oo is most important for qualitative analysis of stability. However, for practical applications one
n>0

needs to control the size of the constants in the corresponding stability estimates, taking into account that such
constants may be of big size or even be growing functions of some parameters of the method. In this paper we
therefore examine the behavior of the stability constants as functions of the constant in the original resolvent
estimate, as such we consider two, close to each other in some sense, resolvent conditions, which will be specified
below.
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Fig. 1. The set T (a, @)

Throughout the paper we shall denote by €' and ¢ generic constants, subject to C' > 0 and ¢ > 0, whose
sizes will be unessential for our analysis. They may depend on other constants appearing in the context but
they never depend on M occurring in the below estimate (2).

Now we state the resolvent conditions accepted in the present paper. In our subsequent consideration we ac-
tually deal not only with power boundedness but, as already mentioned above, we intend to show some weighted
estimates related to that expressing the power boundedness. In view of this, given a discrete semigroup 47,
n > 0, it will be convenient to pose the starting resolvent conditions in terms of the operator 2A = I — i{, which
is called the generator of the discrete semigroup 4”. More precisely, we accept the following requirement on %,
with a set V' suitably chosen and with some M > 1,

(AL —20)~!|| < MIA~" forall A¢IntV. (2)
In fact, we admit of only two possibilities for choosing V. More precisely, we state the following two hypotheses:
H1: A satisfies (2) with V = T(a,a),
for some fixed 0 < ¢ < 1 and 0 < o < arcsin a, and
H2: A satisfies (2) with V =D(1;1).

As concerns the constant M in (2), we suppose that its size may vary but, at the same time, it remains under
control. The main aim of the present paper will be therefore to trace the dependence of the constants in the
final stability estimates on M.

We remark that the results stated in [1]® are based on making use of (2), with V' C D(1;1) taken in
the form of driving wheel whose jags have a sharp contact with the circle 9D(1;1) (see the figure in [1]). The
main resolvent condition in [1] is therefore a slight generalization of the above hypothesis H1 in the case when
M = C. Tt has been shown in [4] that such a situation is really natural for the so-called parabolic case. It seems,
however; that Soviet Mathematics Doklady is hardly popular among the West readers. The main assertion on
power boundedness from [1], more precisely, its particular case under hypothesis H1 with M = C has been
repeatedly restated afterwards. Moreover, it was, in fact, the most essential component of the approaches used
in Lyubich [15] and Nagy and Zeméanek [19] while the original work [1] seems to have never been even referenced.
The results of [1] remained unnoticed in spite of the fact that they had given an impact for a big series of works
on stability of both autonomous and nonautonomous equations®, problems with splitting operator, ill-posed
problems, problems with generalized input data, problems on nonuniform grids, etc. (see, e.g., the references
in [6]) — most of these developments appeared in the West literature or, at least, translated into English. Note

2 The corresponding proofs are given in [2, 3, 5].
4 In the stability analysis of discretizations of nonautonomous equations one has, in fact, to estimate products

of linear operators, which are noncommutative, in general. Obviously, this is a more difficult problem than
that of estimation of powers of linear operators. It is worth noting that the consideration in [1] covers the
nonautonomous case as well.
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that the dependence of the stability constants on M was not examined in [1], as if it were accepted that M = C'.
Our first result here (see Theorem 1.1 below) asserts that the stability constant has a linear growth with M. In
order to show that, we use, in fact, our old techniques, which have been previously presented only in Russian
editions, except for a Spanish report [6].

Note further that accepting hypothesis H2 is equivalent to the Tadmor resolvent condition (cf. Tadmor [27]).
This condition is also related to the so-called Ritt resolvent condition introduced in Ritt [23]. Tt is known
that both conditions are, in fact, equivalent in some sense (see remarks in Borovykh, Drissi & Spijker [7] and
Vitse [28]) but, assuming the Ritt condition, one can only show that H1 holds in such a way that the constant M
cannot be specified. It turns out that using hypothesis H2 or, equivalently, the Tadmor resolvent condition,
the stability constants have a more involved behavior, in comparison with the case when H1 is accepted. At
the same time, in our opinion, hypothesis H2 cannot be thought of as more natural than hypothesis H1, and,
perhaps, H2 is rather of theoretical interest. In fact, as it follows by analytic continuation, H2 implies H1 if with
a bigger constant M; in place of M. This means that the discrete problem in question is naturally parabolic.
On the other hand, as it has been shown, for instance, in [4], hypothesis H1 holds naturally after reasonable
discretization of parabolic problems and should be therefore thought of as original, not as a produce of H2,
with some My < M in place of M. Nevertheless, H2 is used here for the reason that it is extensively discussed
in the literature and they give rise to the question in which way the size of the constant M appears in stability
estimates. By the way, both Ritt [23] and Tadmor [27], themselves, have not really shown the uniform stability
of the discrete semigroup with respect to n, based on the conditions suggested by them, while Lyubich [15]
and Nagy & Zemanek [19] have been able to do this, using the above-mentioned equivalence between the above
hypotheses H1 and H2. In [15] and [19] they do not, however, trace the constants of stability (as functions
of M); this problem is just settled in the present paper (see Theorem 1.2 below), via analytic continuation of
the resolvent. At the same time it has been shown in Borovykh, Drissi, and Spijker [7] (cf. also El-Fallah &
Ransford [8] and Vitse [29]), under a condition, which is equivalent to stating hypothesis H2, that ||4"]| < CM?,
while Theorem 1.2 below gives

[|47]] < CM log(1 + M).
Also, actually, under the same restriction, Yuan [30] has found an estimate, which is equivalent to the fact that
AL < CMP(n +1)7F,
while it follows from Theorem 1.2 below that
24| < CM? log(1+ M) (n+ 1)1

It is worth noting that the present advancement, in comparison with the results of [7, 30], has become possible
due to our techniques, which allow us to work with the resolvent outside of sets whose configurations are like
those considered in [1]. On top of all this, Theorem 1.2 gives an estimation of the quantity ||A¢4"|| for fractional
values of £ > 0.

Now we state the main results of this paper. In our consideration it is assumed that we are given a discrete
semigroup U”, n > 0, and A stands for its generator, that is A =T — [

Theorem 1.1. Let A satisfy hypothesis H1 with some fized a € (0,1) and « € (0,arcsina]. Then, for any fived
£>0, we have for alln =0,1,.. .,

AU || < CM (n+1)7¢. (3)
Theorem 1.2. Let A satisfy hypothesis H2. Then, for any fired £ > 0, we have for alln =0,1, ...,
AU )| < CK (M) (n+1)7¢, (4)
where, with [£] the integral part of &,
Mt log(1+ M) if &=][¢],
(M) = J MR ioE<E<iry,

e oty <E<ieL
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The proofs of these assertions are given in the next section.
Note that the above estimates (3) and (4) have counterparts in holomorphic semigroup theory, for a closed
operator A satisfying the resolvent condition, with some fixed ¢ € (0, 7/2],

[(AL = A)7H| < M7 for A e XY,

which implies, in particular, that A generates a holomorphic bounded semigroup e~*4. More precisely, it is
then possible to estimate the quantity ||A¢e~4?||, tracing the dependence on M, provided that one distinguishes
between the cases when 0 < ¢ < /2 and ¢ = 7/2 (for the result in the case M = C| see, e.g., Komatsu [11,
Theorem 12.2]).

2. Proofs.

Proof of Theorem 1.1. Assume first that £ = 0. Let then I'” be a positively oriented contour given by
3(7)(0; din+1)"") U T(a, a)), n=0,1,...,

where d is given by (1). By the Dunford—Taylor operator calculus formula, we have for all n = 0,1, ...,

ur = (271-1')_1/(1—/\)”(/\I—Ql)_ld/\. (5)

It follows from (5), after a simple estimation, that for n = 0,1,...,

n 1 n _ T
I8 < o= [ 1= AP = 207 10 < 0 [ = AP Ao, (6)
It It
Clearly, I'” can be decomposed as follows:
" =I7Uriuls, n=01,..., (7)
where
7 =x0NnaD(0;d(n+1)"Y), I%=D(0;d(n+1)"1)" ND(0;d) NIL,,
and T's consists of all A € 9T (a, ) that lie on the circle 9D(0; a). Further observe that for all A € T'T,
[1-A"<C

and

AT < Cn+ 1),

consequently, for n = 0,1, ...,

Ju=arprta < ey [la < (8)
r» r»

Next, in view of the restriction o < 7/2; we have
|1 — A" < exp(—c(n+1)|A]) for XeTl%,

which gives for n = 0,1, ...,

/|1—/\|"|/\|_1|d/\| g(]/ exp(—(n+ l)ex)a™"dx = C. (9)
Tz d(n+1)-1

Finally, it is easily seen that

A"l < C if AeTs,

whence it follows that for all n = 0,1, ..., since a < 1,

/|1 —A"IA AN < Ca™ < C. (10)
s
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Therefore, (3) with £ = 0 follows by combining (6), (7), (8), (9), and (10).

In the case when & > 0, instead of (5) we use the formula
A" = (2m)—1/A5(1—A)”(M—mn)—lcu, (11)
r

where T is a positively oriented contour coinciding with the boundary of the set Y(a,«) and one takes the
principal branch of A¢. It is not hard to see then, with the aid of the above argument, that, applying the
representation (11) and using further estimates, which are similar to (9) and (10), one can show the claim for

£ >0 as well. O

To prove Theorem 1.2, we first show some quantitative estimates for the procedure of analytic continuation.
Lemma 2.1. Let £ € B(X) and let p ¢ (L), with
ot - 271 < o
Then, for any A € C such that |A — p| =: 7 < M, we have

M
1—rM’

|7 = 27 <

Proof. The claim follows, with the aid of a standard argument (cf. Hille & Phillips [9, Section 5.8]), when

inserting
.

g (=870 = (=) k(] — L)~ for p g o(g),

into Taylor’s expansion of the resolvent

A -g) =3 (A;if‘)n dCZ” (ul — &)~

n=0

The last result can be further used to obtain a resolvent estimate in an important particular case.

Lemma 2.2. Let £ € B(X) be such that, with some M > 0,
(=)~ < MIAI7Y for Re <0,

and let ¢ be an arbitrary number such that w/2 — arcsin M~! < ¢ < 71/2. Then for each X € 28, we have

-1 M -1
H(/\I_E) ||§1—Mcosg0|/\| ’

i[Al
sin @
in mind, using the accepted restriction on ||(u[ — 2)_1” and applying further Lemma 2.1, we obtain, since
|l > [

Proof. Let A € C be arbitrary, with arg A = ¢. Then, for p := , we have |p — A| = |u|cos . With this

_ M _ M _
=27 < L e —2
1—Mp|=Yp— Al 1—Mcosy
By symmetry, the same estimate holds as well for all A with argA = —¢;. It is also clear, using the above
reasoning, that this result remains valid for all A such that |arg(—/\)| <7m— . O

1
Proof of Theorem 1.2 in the case £ = 0. We put ¢ := arcsin SR for short.
Assume first that (n + 1)7! < 2sin . Let then ™™ be a positively oriented contour given by

M _ M M M
e =rrr ury™ ury,
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where M 0]

P =0D(0;(n+ 1)) NEY,_
5 =D (0; (n+ 1)) ND(0; 2sin @) N OTeyo_y,
¥ =oD(L1)NEr 0y

By the accepted conditions, applying Lemma 2.2 yields for A € En/z o

M

—1
A =07 < T

IA7h=2M A,
which, in particular, shows that

AT =271 <2M(n+1) for AeTf.

Also, for further reference, observe that, by the accepted conditions,

M
—1 .
||(/\] —2) || < Sy —— cos(arg ) for all A€ aD(1;1).

Using now formula (5) with T™# in place of I, we have for n = 0,1,. ..,

Ur = (2mi)~1 /(1—/\)”(/\I—Ql)‘1d/\:(2m’)‘1< / ot / +/>

oM rmM F;,M M

=: (27Ti)_1(11 +Ir + 13)

Since |1 — A" < O for A € F?’M, with the aid of (13), it immediately follows that

|1 11]] < 2M(n+1) / [L=A"|dA\|<CM, n=01,....

oM

For further success we note that, by the evident estimates, for n = 0,1, ..

1—xexp<i(g - go))

el

! 1
< (1—esing)?/? < C’exp(—x n—2|— singp),

if 0<2z<sing, and

n

<1 if sing <z <2sinyp,

1 xexp(i(g —gp))

a simple calculation yields

2sin @ 2sin @
+1 d d
1—xexp<i(%—gp ) C'/ exp singp)—x—l— / —nglog(l—l—M).
x x
1/(n+1) /(n+1) sin ¢

Using this and (12), we get for n = 0,1, ..

el

(13)

(14)

(15)

(16)

(18)

28in ¢ n
d
||Iz||§4M/ 1—xexp<i(%—gp)) —ngMlog(l—i—M).
T
(n41)-1
) ) d(? cosﬁexp(iﬁ)) W ) )
Finally, since 79 =2and |1 =\l =1for A e T'3", we find for n = 0,1, ..., with the aid of (14),
/2—
_ldAl -1
|13|<— (cos ¥) ™ dd < C'M log(1 + M).
cos arg/\ -

0

(19)
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Now it follows from (15), (16), (18), and (19) that, if (n + 1)~ < 2sin ¢,
U] < CMlog(1+ M), n=0,1,.... (20)

A similar argument in the case when (n 4+ 1)7! > 2sin¢ (in this case the path of integration will contain
no line segments) gives for n =0, 1,.. .,

|4 < CMlog(n +2) < CM log(1 + M). (21)
The claim thus follows by combining (20) and (21). O

1 ~
Proof of Theorem 1.2 in the case £ > 0. Let, as above, ¢ = arcsin oYY and let I'M be a positively oriented

contour given by N - ~ -
™ =rt¥ur¥ury,

where _
'™ =D(0;sin ) N OXr /12—,

~ ) 1N .
¥ =D(0;sin )© ﬂD(O; (2 — M) smgp) NIXrj2—p,
l:éw =< A A= (2 — i) cos(arg A) exp(iarg A) » N Xr/o .
Vi @
With the aid of (11) and with '™ in place of ', we have for n = 0,1, ...,

ALY" = (2m')—1/Af(1—A)"(M—QL)—1dA:(2m')—1( /+/+/>

/ )
=: (27Ti)_1(J1 + Jo + Jg)

What we do next is that we show suitable estimates for Ji, Js, and Js.
A simple estimation, which is similar to that leading to (18), gives for n = 0,1,..., with the aid of (17),

1 xexp(i(g —gp))

sin ¢

lall<anr [ a6

n

dx < C’M/xg_lexp(—g (n+ l)singo) da
0

(23)
<COMMYe(n+1)7¢,
Similarly, with the aid of the estimate
T . . x . .
1-— xexp(z(§ — go)) < exp(—smgp(smgp— 5)) for sinp <z < 2sin ¢,
we obtain in the case 0 < £ < 1,for n=0,1,..., since 271(1 —e™%) < 27¢ for z > 0,
(2—1/M)siny n
|| J2|] <4M / xt~! 1—xexp<i(%—gp)) da
sin @
2sin @
. 1 . . x (24)
< CM(sin )¢ exp —(n—i—l)smgp(smgp—§) dx
sin @

< OMGsing)5 20+ 17! (1= exp (= sin? p) ) < €O+ 1)

Next, with the aid of (14), using the analytic continuation of the resolvent of 2 from the set 9D(1;1) \ {0}
towards the origin, within the sector X /2_,, and applying Lemma 2.1, we come to the following estimate for

all A\ e TH.

M (2 cos(arg /\))_1 B M

A -7 < = :
”( ) ” 1 — M(2cos(arg /\))_1M—1 cos(arg A) cos(arg A)

(25)




NUMERICAL METHODS AND PROGRAMMING, 2003, VoL. 4 (http://num-meth.srcc.msu.su) 355

At the same time we have for A € fé”,

N — (1 (9 ar=Iyas-1 .2 .q\n/2 n+l 2

[T — Al _(1 (2— M~ )M™" cos 79) gCexp( o ¢ 79). (26)

d((? — M=% cos ﬁexp(iﬂ))
dv

Therefore, since

‘ < 2, using (25), (26), the estimate

oQ oQ

1 1 M? \¢
/xﬁ—lexp(—nQL xz) de < /xg_lexp(—x n2—|]\—4 Singp) dl‘SC(n_i_l) ,

sin @ sin ¢

and the above argument, we obtain for n = 0,1, ...,

w/2—¢

B 1
1 <M [ N Gcontarg A) = A faA < O [ (eos)stexp (<5F

cos? 79) dv
™ 0

gCM( / xg_lexp(—n—i_lxz) dx—l—exp(—n——i—l)) (27)

sin @

g(]M(( ]\_{21)5 —I—exp(—Z——;\_;)) < COM™%(n41)7¢,

n

Combining now (22), (23), (24), and (27), we obtain in the case 0 < £ < 1,

AL || < CMYF2E(n 4 1)7¢ for n=0,..., (28)

1
which implies the desired result in the case 0 < £ < 5

For below reference we also give a slightly different estimate for ||Js||. More precisely, using the first three
lines in (27), we get in the case when n+ 1 < M,

M ONEZ T ntl _
|| J5]] < CM<(n——|—1) /1‘5 Lexp(—=?) de + exp(—w)) < CM™e(n+1)7¢. (29)
0

Now we derive one more estimate for ||Jz + J3]||, which will be an important ingredient for showing (4) for

AL(p) = sinp exp (—l(g - so)),
A2(¢p) :=sin g exp (l(g - so)),

HA) = (n+1)7H1 = )" TS — )7L,

1 3 .
3 <E< 7 In fact, putting

and

and integrating by parts, we find

/ (1= N (A —2)~tdA
= (~H (o) + Hule)) + [ (7 HO) = HOY M = 2)7") dx (30)

vy

+ / (EXTTHA) — HA) (M —20)7") dA =: Hy + H» + H3.

Ty
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With the aid of (12) and (17), a direct estimation gives, since z6~te~% < C for all z > 0, in the case when & > 1,

CM?*¢(n+1)"t if 0<é<1,
TR S S (31)
CMé(n+1) if &> 1.
Next, using the argument leading to (24) and (27), we get
CM3=¢(n+1)"t if 0<é<1,
I1#21] < CMYe(n+1)"¢ if 1<€<2, (32)
and
CM3=¢(n+1)7! if 0<é<,
|Hs)| < ¢ CM?log(14+ M) (n+1)~t if €&=1, (33)
CM¥*(n+1)"¢ if &>1.

Clearly, in the case 0 < & < 1, it follows from (31), (32), and (33) that

|Hi+ Ho+ H3|| < CM*(n+1)7¢ if M <n+1.

1
Combining this with (22), (23), (24), (29), and (30) proves (4) for 3 <€ <.
It is also seen that, in the case 1 < £ < %, the claim follows by combining (22), (23), (31), (32), and (33).

Further, to show the result for % <E< g, we integrate again by parts on the right-hand side of (30) and
use (31) and the above argument. Note that, similarly to (29), one can find for & > 1,

[ Hal| < CMBYO/2(n 4 1) 040/,

which will be needed at this stage of the proof.
Clearly, using repeatedly the above reasoning, the claim can be shown for any fixed £ > 0 in a finite number
of steps. O
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