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SIMULATION OF UNSTEADY GAS-PARTICLE FLOW
INDUCED BY THE SHOCK-WAVE INTERACTION WITH A PARTICLE LAYER

K. N. Volkov1, V. N. Emelyanov2, A. G. Karpenko3, I. V. Teterina4

A numerical simulation of the unsteady gas-particle flow arising from the shock-wave interaction
with a layer of inert particles is performed based on a continuum model. Each phase is described by
a set of equations describing the conservation laws of mass, momentum and energy. The interphase
interaction is taken into account using source terms in the momentum and energy equations. The
governing equations for the gas and dispersed phases are of a hyperbolic type, they are written in
a conservative form and are solved with a Godunov type numerical method. A third order Runge–
Kutta method is used to discretize the governing equations in time. The proposed model allows one
to calculate a wide range of gas-particle flow regimes occurring when the volume concentration of the
dispersed phase varies. The closure of the mathematical model and some details of numerical model
implementation are discussed. The shock-wave flow structure as well as the space-time dependencies
of particle concentration and other flow parameters are presented.
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1. Introduction. Mathematical simulation of multiphase media flows is a topic of interest to many sci-
entific disciplines and engineering applications. A multiphase medium is usually understood as a continuous
medium consisting of several components (phases) with different physical properties. Despite the high demand
for this topic, many issues related to building physical, mathematical and computational models of multiphase
flows require further research [1].

It is quite common for practical applications in the field of gas dynamics to require taking into account
additional physical factors and processes. This requires introducing new components into the gas dynamics
equations and adding extra equations and calculations to the system, which changes the content of mathematical
models. In gas-particle mixtures, the flow pattern is described by the influence of relaxation processes in the
velocities and temperatures of the two phases, the typical lengths of which are determined by the particle size.

In the interpenetrating continuum model proposed in [2], the multiphase flow is considered as a set of
interacting continuums (phases) and is described by the parameters obtained by applying the filtering procedure.
The behavior of each phase is described by the laws of mass, momentum and energy conservation, while
interaction between the phases is taken into account by adding special algebraic or differential terms to the
right-hand side of the conservation law equations. One problem with the classical models obtained by the
filtering method is the challenge of properly describing the processes taking place at the boundary between
phases.

A common approach to describing the flows in two-phase compressible media is the use of single pressure
models. Usually the systems of equations used in models like this are of a mixed elliptic and hyperbolic type,
which makes it difficult to set the initial boundary value problems properly [3]. To overcome the challenges
associated with the improper setting of the initial boundary value problem, various modifications of the single
pressure model are proposed [4]. The hyperbolicity of the basic equations in such models is achieved by
introducing additional differential summation terms in the right-hand side of the equations describing changes
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in the quantity of motion, which are called virtual mass forces and interphase pressure. This results in a
hyperbolic system of basic equations; however, reducing it to a symmetric form or representing all the equations
in the system in a divergence form becomes impossible. This complicates the application of modified models
for the study of discontinuous solutions, including problems involving shock waves and contact discontinuities.

The phenomenological model of interpenetrating continuums has historically been one of the first models
designed to calculate the flows in two-phase media. A study of the propriety of the Cauchy problem for a system
of equations describing the flow of gas with particles is carried out for the case of unsteady one-dimensional
flow of gas suspension with and without the particle volume taken into account [5]. The Cauchy problem is
generally improper for calculating the flow of gas-particle mixture [6]. With some small initial disturbances, the
concentration of disperse phase becomes infinitely large, which in a two-velocity model is associated with the
intersection of particle trajectories.

Intersection of the particle trajectories (or streamlines of the particles in the pseudo-gas given a stationary
flow) leads to two or more different velocity vectors of the dispersed phase being present at the intersection of
the particle trajectories. This leads to ambivalence of the dispersed phase parameter fields (violation of unique
solution principle) and to the emergence of special surfaces (folds or caustic fields) in the flowfield, on which
the particle concentration increases sharply or infinitely [7]. The perturbations of other parameters (pressure,
velocity, etc) remain in the vicinity of their initial values.

The source of non-hyperbolicity lies in the lack of internal pressure in the dispersed phase [5]. In order
to eliminate non-hyperbolicity (while preserving the two-veelocity gas suspension model), additional artificial
pressure is introduced in the momentum change equation for the dispersed phase, which prevents non-physical
increases in particle concentration. In the actual flow, particle pressure in the pseudo-gas is created due to
interaction between the particles and chaotic particle movement. The instability of numerical solutions is an
inherent property of the interpenetrating continuums model, caused by an insufficient description of interaction
between the phases and interactions within the dispersed phase.

It is quite difficult to take into account the factors contributing to the admixture chaotic movement within
the framework of the phenomenological model of interpenetrating continuums. Ignoring the random factors
helps simplify the two-phase flow model, but that means the numerical schemes developed for solving the
problems of classical gas dynamics are no longer usable. Ignoring interactions between the particles, such as
collisions, turns the dispersed pseudo-gas into a medium without internal pressure.

In the two-pressure model proposed in [8] (Baer–Nunziato model), the two media composing the two-phase
mixture are described by their own systems of conservation laws, while phase interaction is simulated by special
terms in the right-hand side of the continuity and momentum change equations. Speed and pressure values at
the boundary of the two phases are selected in different ways depending on the model area of application. For
gaseous media containing solid particles, the boundary speed value is assumed to equal the speed of the solid
phase, and the boundary pressure value is assumed to equal the gas pressure value. In a three-dimensional case,
the Baer–Nunziato equations are a system of 11 differential equations with partial differentials (5 for the gas
phase and 6 for the solid phase).

In [9], a non-equilibrium two-fluid model is used to describe the motion of a compressible multiphase mix-
ture with phase boundaries, completed by a volume concentration equation. Despite the fact that hyperbolic
equations are used in the simulation, not all of them are presentable in a divergence form, which causes diffi-
culties when attempting to simulate discontinuous solutions, and complicates the use of modern computational
methods.

Mathematical features of the single-dimensional Baer–Nunziato equations are investigated in [10]. The
Baer–Nunziato equations are hyperbolic, but they cannot be written in the form of conservation laws (in a
divergence form). When recorded using conservative variables, the equations retain non-conservative terms,
which renders it impossible to apply the classical Rankine–Hugoniot conditions to discontinuities. Solving the
non-conservative hyperbolic equations is a challenging task from both theoretical and computational points of
view [11, 12, 13]. Riemann problem for the Baer–Nunziato equations is formulated and solved in [14, 15, 16,
17]. Given certain initial data, Riemann problem can have more than one solution [18]. An approximation of
the Riemann problem is used to build a numerical flow for the conservative part of the equations. The Roe
scheme is applied in [17], and numerical approaches to solving the Baer–Nunziato equations based on the finite
volume method and Galerkin method with discontinuous basic functions are developed in [19, 20, 21].

In a general case, six families of undulations are present in the task: three for the gas phase and three for the
solid phase. Six characteristics divide the (𝑥, 𝑡) plane into seven sub-planes, within which the medium maintains
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stable parameters. Solid phase variables remain stable when crossing all three gas characteristic undulations,
while the contact discontinuities in the solid phase change all gas variables except tangential velocity. The left
and right non-linear solid phase undulations do not affect the gas variables, and the phase concentration leap
only occurs at the contact discontinuity of the solid phase. In the vicinity of the contact discontinuity of the
solid phase, the right part of the Baer–Nunziato equations becomes non-zero, and the equations for both phases
become bound due to the concentration leap. The classical Rankine–Hugoniot conditions become inapplicable,
and therefore the contact discontinuity in the solid phase is considered as an infinitely thin layer in which all gas
parameters change continuously and all differentials exist [15]. Thin layer equations bind medium parameters
on both sides of the contact discontinuity of the solid phase.

A statistical approach based on a kinetic equation for the probability density function of particle velocities
represents a sequential method for building continuous models of gas suspension flows. Statistical models of
two-phase flows are considered in [22, 23]. The movement of disperse phase is described in the framework of
a continuum approach, based on the application of the Liouville theorem to the system of dynamic equations
describing the behavior of an individual particle [24]. The influence of sub-grid effects on the motion of particles
in a turbulent flow is discussed in [25, 26] in the framework of the interpenetrating continuum model. Despite
numerous studies, there is no universally accepted approach to mathematical modelling of multiphase compress-
ible flows. The existing approaches have weaknesses related to non-hyperbolic nature of the equation system and
the presence of equations that cannot be represented in a divergence form. Satisfying the above requirements
provides a mathematical basis for setting initial boundary value problems, and opens up opportunities for the
development of numerical algorithms.

This paper develops a model designed for numerical simulation of unsteady gas flows with inert particles.
Introducing the probability density function allows formulating a statistical description of the particle system
instead of giving a dynamic description of individual particles based on the Langevin stochastic equation. The
continuity, momentum and energy change equations for the gas and disperse phases are hyperbolic in nature
and are solved using the Godunov-type numerical scheme at an increased order of accuracy. Flow structure and
spatial and temporal dependencies of flow parameters at interaction with a layer of particles of subsonic and
supersonic flow speeds are calculated.

2. Mathematical model. Equations describing the motion and heat transfer in the dispersed phase
are derived from the Liouville equation describing the probability density function of particle distribution by
coordinates, velocities and temperatures. To complete the resulting equations, the correlation moments of
velocity and temperature in the dispersed phase are ignored. When recording the basic equations, indices 𝑔 and
𝑝 correspond to gas and particles.

2.1. The discrete model. The motion and heat transfer equations for a sample particle are stochas-
tic Langevin-type equations depending on the random velocity 𝑣𝑔 and temperature 𝑇𝑔 fields of the carrier
flow, where the velocity and temperature of the carrier gas are calculated at various points along the particle
trajectory. The equations describing motion and heat transfer for a sample particle are of the form

𝑑𝑥𝑝

𝑑𝑡
= 𝑣𝑝; (1)

𝑚𝑝
𝑑𝑣𝑝

𝑑𝑡
= 𝑓𝑝; (2)

𝑐𝑚𝑝 𝑚𝑝
𝑑𝑇𝑝

𝑑𝑡
= 𝑞𝑝. (3)

Here, 𝑚𝑝 is the particle mass; 𝑐𝑚𝑝 is the heat capacity of particle material; 𝑥𝑝 is the position vector of the
particle center of mass; 𝑣𝑝 is the particle speed; 𝑇𝑝 is the particle temperature; 𝑓𝑝 is the force acting upon the
particle; 𝑞𝑝 is the convective heat flow between gas and the particle.

For the drag force acting on the particle, the ratio is

𝑓𝑝 =
1

2
𝐶𝐷𝜌𝑔 |𝑣𝑔 − 𝑣𝑝| (𝑣𝑔 − 𝑣𝑝)𝑆𝑚,

where 𝜌 is the density, and 𝑆𝑚 is the mid-section area of the particle. The resistance factor is presented as

𝐶𝐷 = 𝐶𝐷0𝑓𝐷,

where 𝐶𝐷0 = 24/Re𝑝 is the drag coefficient corresponding to the Stokes law; 𝑓𝐷 is a function adjusting for
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particle inertia and compressibility. The correction function is represented as

𝑓𝐷 =
(︀
1 + 0.15Re0.687𝑝

)︀ [︃
1 + exp

(︃
− 0.427

M4.63
𝑝

− 3

Re0.88𝑝

)︃]︃
.

Reynolds and Mach numbers are calculated from the relative velocity of gas and particles

Re𝑝 =
2𝜌𝑔𝑟𝑝 |𝑣𝑔 − 𝑣𝑝|

𝜇
, M𝑝 =

|𝑣𝑔 − 𝑣𝑝|
𝑐

,

where 𝜇 is dynamic viscosity, and 𝑐 is local speed of sound. For a spherical particle with radius 𝑟𝑝 the mid-section
area is 𝑆𝑚 = 𝜋𝑟2𝑝 and 𝑚𝑝 = 4𝜋𝑟3𝑝𝜌𝑝/3. Equation (2) is presented as

𝑑𝑣𝑝

𝑑𝑡
=

𝑓𝐷
𝜏𝑣

(𝑣𝑔 − 𝑣𝑝). (4)

Here, 𝜏𝑣 = 𝜌𝑝𝑑
2
𝑝/(18𝜇) is the dynamic relaxation time.

Expressing the heat transfer factor through the Nusselt number (ℎ = Nu𝑝𝜆𝑝/𝑑𝑝), the convective heat flux
between the gas and the particle is presented in the form

𝑞𝑝 = Nu𝑝𝜆(𝑇𝑔 − 𝑇𝑝)
𝑆𝑝

𝑑𝑝
,

where 𝑆𝑝 is the particle surface area, and 𝜆 is the heat conductivity of the gas. The Nusselt number is presented
in a form adjusted for particle inertia

Nu𝑝 = 2 + 0.459Re0.55𝑝 Pr0.33,

where Pr is the Prandtl number (Pr = 0.72 for air). Equation (3) is presented as

𝑑𝑇𝑝

𝑑𝑡
=

1

𝜏𝜗
(𝑇𝑔 − 𝑇𝑝), (5)

where 𝜏𝜗 = 𝑐𝑝𝜌𝑝𝑑𝑝/(3𝜆Nu𝑝) is the thermal relaxation time, and 𝜏𝜗 = (3Pr𝛽/Nu𝑝)𝜏𝑣, where 𝛽 = 𝑐𝑚𝑝 /𝑐𝑝 is the
ratio of specific heat capacity of the dispersed phase to specific heat capacity of the gas at constant pressure.

In non-dimensional variables, dynamic and thermal relaxation times are replaced by Stokes numbers

Stk𝑣 =
2𝜌𝑝𝑟

2
𝑝𝑈

9𝜇𝐿
, Stk𝜗 =

2𝑐𝑝𝜌𝑝𝑟𝑝𝑈

3𝜆Nu𝑝𝐿
,

where 𝐿 and 𝑈 are characteristic length and velocity scales.
2.2. The continuity model. The approach proposed in [22] for large-eddy simulation of turbulent gas

suspension flows, and its generalization developed in [25, 26] for direct numerical simulation of two-phase flows
are used to construct equations describing motion and heat transfer in the particle continuum. In the continuum
approach, the continuity equation, momentum equation and energy equation of the dispersed phase are derived
from the Lagrangian equations of motion and heat transfer of an individual particle recorded in (1), (4) and (5).
For simplicity, it is assumed that 𝑓𝐷 = 1 and Nu𝑝 = 2.

To make transfer from the dynamic stochastic Langevin-type equations (Lagrangian description) to a
statistical description of the particle system distribution by coordinates, velocities and temperatures (Euler
description), the dynamic density of the probability distribution in the phase space of the particle coordinates,
velocities and temperatures is introduced

𝑤𝑖(𝑥𝑝,𝑣𝑝, 𝜗𝑝, 𝑡) = 𝛿
[︁
𝑥𝑝 − 𝑥𝑝𝑖(𝑡)

]︁
𝛿
[︁
𝑣𝑝 − 𝑣𝑝𝑖(𝑡)

]︁
𝛿
[︁
𝜗𝑝 − 𝜗𝑝𝑖(𝑡)

]︁
,

where 𝑣𝑝, 𝜗𝑝 are the velocity and temperature of the dispersed phase, representing a manifestation of a random
velocity and temperature field at time 𝑡 in point 𝑥𝑝; 𝑣𝑝𝑖, 𝜗𝑝𝑖 are parameters acting as independent variables.

At time 𝑡, the state of a system consisting of 𝑁 particles is determined by setting the coordinates
𝑥𝑝1, . . . ,𝑥𝑝𝑁 , velocities 𝑣𝑝1, . . . ,𝑣𝑝𝑁 and temperatures 𝜗𝑝1, . . . , 𝜗𝑝𝑁 of all particles. The aggregate of co-
ordinates, velocities and temperatures of an individual particle is expressed as 𝑧𝑝𝑖 = (𝑥𝑝𝑖,𝑣𝑝𝑖, 𝜗𝑝𝑖), where
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𝑖 = 1, . . . , 𝑁 , and the aggregate of coordinates, velocities and temperatures of all particles in the system is
expressed as 𝑍 = (𝑥𝑝1, . . . ,𝑧𝑝𝑁 ).

Considering particles as statistically independent units, the single-point dynamic density of probability
distribution is defined

𝑤(𝑥𝑝,𝑣𝑝, 𝜗𝑝, 𝑡) =
𝑉𝑝

𝑉Σ

𝑁∑︁
𝑖=1

𝑤𝑖(𝑥𝑝,𝑣𝑝, 𝜗𝑝, 𝑡),

where 𝑉𝑝 is the particle volume, and 𝑉Σ is the system volume. The local functions of the dynamic variables,
which depend on the position of the point 𝑧𝑝 = 𝑧𝑝(𝑥𝑝,𝑣𝑝, 𝜗𝑝) in the phase space, are expressed through the
microscopic phase density in the coordinate space, velocities and temperatures of the particles, which meets the
normalization condition ∫︁

𝑤(𝑥𝑝,𝑣𝑝, 𝜗𝑝, 𝜏)𝑑𝑥𝑝𝑑𝑣𝑝𝑑𝜗𝑝 = 1.

Assuming 𝑧𝑝 = (𝑥𝑝,𝑣𝑝, 𝜗𝑝) and 𝑧𝑝𝑖 = (𝑥𝑝𝑖,𝑣𝑝𝑖, 𝜗𝑝𝑖), the following expression is derived

𝑤(𝑥, 𝑡) =

𝑁∑︁
𝑖=1

𝛿
[︁
𝑧𝑝 − 𝑧𝑝𝑖(𝑡)

]︁
.

The distribution of macroscopic states of the system evolves as a result of changes in the location of
points 𝑧𝑝1, . . . , 𝑧𝑝𝑁 , which describe the system state at different points in time. By differentiating the dynamic
density of the probability distribution in phase space over time, using the equations of momentum and heat
transfer equations for a sample particle recorded in Lagrangian variables, and by summing over 𝑖 = 1, . . . , 𝑁 ,
the stochastic Liouville equation is derived [22, 27]

𝜕𝑊

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝑣𝑖𝑊 ) − 𝜕

𝜕𝑣𝑖

(︂
𝑣𝑖 − 𝑢𝑖

𝜏𝑣
𝑊

)︂
− 𝜕

𝜕𝜗

(︂
𝜗− 𝑇

𝜏𝜗
𝑊

)︂
= 0, (6)

where 𝑥𝑖, 𝑣𝑖 and 𝜗 are the coordinates, velocity and temperature of the particle, respectively. Summation by
repeating indices is assumed.

The spatial filtering operator is defined by the ratio

𝑓(𝑥) =

∫︁
𝑓(𝜉)𝐻Δ(𝑥− 𝜉)𝑑𝜉,

where 𝑓 is the average value of the 𝑓 function, 𝐻Δ is the kernel function. The kernel is non-negative and meets
the normalization criteria. The filter width ∆ is set small enough, so that the ratio ̃︀𝑣𝑔 = 𝑣𝑔 is true for the
gaseous phase. Gas variable are not affected by sub-grid fluctuations, therefore ̃︂𝑢𝑖𝑊 = 𝑢𝑖

̃︁𝑊 and ̃︂𝑇𝑊 = 𝑇̃︁𝑊 .
Given a non-negative kernel (top-hat filter, Gaussian filter), the function 𝑊 meets the requirements to the
probability density function [28, 29].

Let’s assume 𝑍 is the aggregate of coordinates, velocities and temperatures of all particles in the system,
while 𝒵 is the aggregate of spatial coordinates, velocities and temperatures in phase space. Along with the
probability distribution density of the states of the particle system 𝛿[𝒵 − 𝑍(𝑡)], let’s introduce the average
probability distribution density of the system states 𝑊 (𝒵, 𝑡). It follows from the definition of the filtering
operation that

𝑣𝑝𝑖𝑤 = 𝑣𝑊, 𝜗𝑝𝑖𝑤 = 𝜗𝑊.

By averaging the Liouville equation over the ensemble of random implementations of velocity and temperature
fields, a statistical description of the particle system is derived. By applying the filtering operator to equation
(6), the filtering Liouville equation is obtained

𝜕𝑊

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(︀
𝑣𝑖𝑊

)︀
− 𝜕

𝜕𝑣𝑖

(︂
𝑣𝑖 − 𝑢𝑖

𝜏𝑣
𝑊

)︂
− 𝜕

𝜕𝜗

(︂
𝜗− 𝑇

𝜏𝜗
𝑊

)︂
= 0. (7)
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Liouville stochastic equation, because of its linearity, has the same form for functions 𝑊 (𝒵, 𝑡) and 𝑊 (𝒵, 𝑡).
The average numerical concentration ̃︀𝛼 (particle number density), average velocity ̃︀𝑣𝑖 and average temperaturẽ︀𝜗 of the dispersed phase are derived from ratios

̃︀𝛼(𝑥, 𝑡) =

∫︁
𝑊 (𝑥,𝑣, 𝜗, 𝑡)𝑑𝑣𝑑𝜗;

̃︀𝑣𝑖(𝑥, 𝑡) =
1̃︀𝛼
∫︁

𝑣𝑖𝑊 (𝑥,𝑣, 𝜗, 𝑡)𝑑𝑣𝑑𝜗;

̃︀𝜗(𝑥, 𝑡) =
1̃︀𝛼
∫︁

𝜗𝑊 (𝑥,𝑣, 𝜗, 𝑡)𝑑𝑣𝑑𝜗.

Equation (7) allows deriving equations for the linear and quadric moments of the disperse phase. The
single-point momentum transfer equations describing oscillatory qualities of the disperse phase are derived by
multiplying the kinetic equation by the weighting function, with subsequent integration over the subspace of
phase velocities.

First-order moments represent average values of the dynamic gas flow parameters, depending on the spatial
and temporal position of the point. Linear moment equations have the following form

𝜕̃︀𝛼
𝜕𝑡

+
𝜕̃︀𝛼̃︀𝑣𝑖
𝜕𝑥𝑖

= 0; (8)

𝜕̃︀𝛼̃︀𝑣𝑖
𝜕𝑡

+
𝜕̃︀𝛼̃︂𝑣𝑗𝑣𝑖
𝜕𝑥𝑗

=
1

𝜏𝑣
̃︀𝛼(𝑢𝑖 − ̃︀𝑣𝑖); (9)

𝜕̃︀𝛼̃︀𝜗
𝜕𝑡

+
𝜕̃︀𝛼̃︁𝜗𝑣𝑖
𝜕𝑥𝑖

=
1

𝜏𝜗
̃︀𝛼(𝑇 − ̃︀𝜗). (10)

Single-point second-order correlation moments determine the kinetic energy of turbulence, the transfer
of momentum and heat in the dispersed phase. Two-point second-order moments describe the spectrum of
turbulence and the size of large-scale turbulent eddies, enabling to assess the correlation between fluctuations
of various parameter values at unequally distant temporal and spatial points. Quadric moment equations have
the following form

𝜕̃︀𝛼̃︂𝑣𝑖𝑣𝑗
𝜕𝑡

+
𝜕̃︀𝛼𝑣𝑖𝑣𝑗𝑣𝑘

𝜕𝑥𝑘
=

1

𝜏𝑣
̃︀𝛼(𝑢𝑖̃︀𝑣𝑗 + ̃︀𝑣𝑖𝑢𝑗 − 2̃︂𝑣𝑖𝑣𝑗); (11)

𝜕̃︀𝛼̃︁𝜗𝑣𝑖
𝜕𝑡

+
𝜕̃︀𝛼𝜗𝑣𝑖𝑣𝑘
𝜕𝑥𝑘

=
1

𝜏𝑣
̃︀𝛼(̃︀𝜗𝑢𝑖 −̃︂𝜗𝑣𝑗) +

1

𝜏𝜗
̃︀𝛼(𝑇̃︀𝑣𝑖 −̃︂𝜗𝑣𝑗). (12)

Single-point third-order moments describe the diffusion of turbulence, and two-point tertiary moments
describe redistribution of energy over the turbulence spectrum.

2.3. Model closing. Components of the sub-grid stress tensor and components of the sub-grid heat flux
vector look as follows

𝜎𝑖𝑗 = ̃︂𝑣𝑖𝑣𝑗 − ̃︀𝑣𝑖̃︀𝑣𝑗 , 𝑞𝑖 = ̃︁𝜗𝑣𝑖 − ̃︀𝜗̃︀𝑣𝑖.
Averaging the dispersed phase parameters creates new terms of sum that require mathematical simulation.

To complete equations (11) and (12), let’s assume that the contribution of tertiary correlation moments is
negligible [22] ∫︁

(𝑣 − ̃︀𝑣𝑖)(𝑣 − ̃︀𝑣𝑗)(𝑣 − ̃︀𝑣𝑘)𝑊 (𝑥,𝑣, 𝜗, 𝑡)𝑑𝑣𝑑𝜗 = 0;∫︁
(𝜗− ̃︀𝜗)(𝑣 − ̃︀𝑣𝑖)(𝑣 − ̃︀𝑣𝑘)𝑊 (𝑥,𝑣, 𝜗, 𝑡)𝑑𝑣𝑑𝜗 = 0.

Using the approaches proposed in [22, 23] for calculating integrals, the equations for the tertiary moments are
replaced by algebraic correlations

𝑣𝑖𝑣𝑗𝑣𝑘 = ̃︂𝑣𝑗𝑣𝑘̃︀𝑣𝑖 + ̃︂𝑣𝑖𝑣𝑗̃︀𝑣𝑘 + ̃︂𝑣𝑖𝑣𝑘̃︀𝑣𝑗 − 2̃︀𝑣𝑖̃︀𝑣𝑗̃︀𝑣𝑘; (13)

𝜗𝑣𝑖𝑣𝑘 = ̃︂𝜗𝑣𝑘̃︀𝑣𝑖 + ̃︁𝜗𝑣𝑖̃︀𝑣𝑘 + ̃︂𝑣𝑖𝑣𝑘 ̃︀𝜗− 2̃︀𝑣𝑖̃︀𝑣𝑘 ̃︀𝜗. (14)
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Ratios (13) and (14) provide a complete formulation of the problem.
The motion and heat transfer of the dispersed phase is described by equations (8)–(10) for the variables̃︀𝛼, ̃︀𝑣𝑖 and ̃︀𝜗, and equations (11) and (12) for the variables ̃︂𝑣𝑖𝑣𝑗 and ̃︁𝜗𝑣𝑖.
By ignoring the inertial effects (𝜏𝑣 = 𝜏𝜗 = 0), the speed and temperature of the dispersed phase are

the same as the respective gas parameters (̃︀𝑣𝑖 = 𝑢𝑖, ̃︀𝜗 = 𝑇 ). In this case, only equations for the numerical
concentration of particles have to be solved, while the transfer equations (9)–(12) do not require solutions.

Partial consideration of inertial effects is possible with the equilibrium model, in which local velocity of the
dispersed phase is expressed as a sum of the local velocity and acceleration of the gas medium. The dynamic and
thermal relaxation time of a particle is used as a parameter in the expansion process. Assuming ̃︂𝑣𝑖𝑣𝑗 = ̃︀𝑣𝑖̃︀𝑣𝑗 and
using equation (8), it can be inferred from equation (9) that the local acceleration of the dispersed phase equals
local acceleration of the gas medium. The equilibrium model describes a number of inertial effects (preferential
acceleration), but is only suitable for describing the motion of sufficiently small particles.

Complete accounting of inertial effects can be performed by solving the equations (8)–(11), assuming that
the contribution of correlation moments described by equations (12) and (13) is negligible. In practice, it means
that ̃︂𝑣𝑖𝑣𝑗 = ̃︀𝑣𝑖̃︀𝑣𝑗 and ̃︂𝜗𝑣𝑗 = ̃︀𝜗̃︀𝑣𝑗 . In this case, the equations in the mathematical model appear to be equivalent
to the model proposed in [30], which describes the gas suspension flows where particles occupy a negligibly
small space and the ratio of dispersed phase to gaseous phase is sufficiently big. For gas suspension with mono-
dispersed particles, the mathematical model equations are the same as those formulated in [??]. Despite taking
into account the inertial effects, ignoring quadric correlation moments of the dispersed phase means omitting a
number of important effects (crossing effect) that play an important role in the flow of a gas with suspended
high-inertia particles.

3. Single-dimensional model. Let’s consider equations describing the motion of inviscid compressible
gas with particles in one-dimensional approximation. The effect of viscous forces is only taken into account on
interaction between the gas and particles.

3.1. The gas. The equation describing an unsteady flow of inviscid compressible gas looks as follows in
the conservative form

𝜕𝑄𝑔

𝜕𝑡
+

𝜕𝐹 𝑔

𝜕𝑥
= 𝑆𝑔. (15)

The equation of state for an ideal gas, and the ratio for calculating specific total energy, are written as follows

𝑝 = 𝜌𝑅𝑇, 𝐸 =
𝑝

𝛾 − 1
+

1

2
𝜌𝑢2.

The conservative variables vector 𝑄𝑔 and flux vector 𝐹 𝑔 have the form

𝑄𝑔 =

⎛⎝ 𝜌

𝜌𝑢

𝐸

⎞⎠ , 𝐹 𝑔 =

⎛⎝ 𝜌𝑢

𝜌𝑢𝑢 + 𝑝

(𝐸 + 𝑝)𝑢

⎞⎠ .

Here, 𝑡 is the time, 𝑥 is the spatial coordinate, 𝜌 is the density, 𝑢 is the velocity in 𝑥 direction, 𝑝 is the pressure, 𝑇
is the temperature, 𝐸 is the total energy, 𝑅 is the gas law constant, and 𝛾 is the ratio of specific heat capacities.
The source term 𝑆𝑔 takes into account the effect of the disperse phase. In dimensionless variables, it is assumed
that 𝑅 = 1/𝛾 and 𝜇 = 1/Re.

Equation (15) is written in linearized form as

𝜕𝑄𝑔

𝜕𝑡
+ 𝐴𝑔

𝜕𝑄𝑔

𝜕𝑥
= 𝑆𝑔, (16)

where 𝐴𝑔 = 𝜕𝐹 𝑔/𝜕𝑄𝑔 is the Jacobian. In physical variables, Jacobian has the form

𝐴𝑔 =

⎛⎝ 0 1 0
1
2 (𝛾 − 3)𝑢2 (3 − 𝛾)𝑢 𝛾 − 1

1
2 (𝛾 − 1)𝑢3 − 𝑢𝐻 𝐻 − (𝛾 − 1)𝑢2 𝛾𝑢

⎞⎠ ,

where 𝐻 = (𝐸+𝑝)/𝜌 is the specific total enthalpy. Jacobian is represented in the form 𝐴𝑔 = 𝑅𝑔Λ𝑔𝐿𝑔, where Λ𝑔

is a diagonal matrix with Jacobian eigenvalues along the main diagonal, and 𝐿𝑔 and 𝑅𝑔 are matrices consisting
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of left and right Jacobian eigenvectors, and 𝐿𝑔 = 𝑅−1
𝑔 . The Jacobian has three real eigenvalues

𝜆1 = 𝑢− 𝑐, 𝜆2 = 𝑢, 𝜆3 = 𝑢 + 𝑐,

where 𝑐 is the speed of sound. The speed of sound is found from the ratio

𝑐 =

[︂
(𝛾 − 1)

(︂
𝐻 − 1

2
𝑢2

)︂]︂1/2
.

The right Jacobian eigenvectors have the form

𝑟1 =

⎛⎝ 1

𝑢− 𝑐

𝐻 − 𝑢𝑐

⎞⎠ , 𝑟2 =

⎛⎝ 1

𝑢
1
2𝑢

2

⎞⎠ , 𝑟3 =

⎛⎝ 1

𝑢 + 𝑐

𝐻 + 𝑢𝑐

⎞⎠ .

Variables corresponding to the zero component of 𝑖-th eigenvector do not change when crossing the 𝑖 character-
istic. Expressions for right eigenvectors are used when constructing flow limiters in high resolution schemes.

Diagonalization of the Jacobian allows one to rewrite equation (16) in the characteristic form

𝜕𝑊 𝑔

𝜕𝑡
+ Λ𝑔

𝜕𝑊 𝑔

𝜕𝑥
= 𝑆𝑔, (17)

where 𝑊 𝑔 = 𝑅−1
𝑔 𝑄𝑔 represents a characteristic variables vector.

3.2. Dispersed phase. The equation describing the motion and heat exchange in the dispersed phase is
written in the conservative form as

𝜕𝑄𝑝

𝜕𝑡
+

𝜕𝐹 𝑝

𝜕𝑥
= 𝑆𝑝. (18)

The conservative variables vector 𝑄𝑝 and the flux vector 𝐹 𝑝 have the following forms

𝑄𝑝 =

⎛⎜⎜⎜⎜⎜⎝
̃︀𝛼̃︀𝛼̃︀𝑣̃︀𝛼̃︀𝜗̃︀𝛼̃︁𝑣𝑣̃︀𝛼̃︁𝑣𝜗

⎞⎟⎟⎟⎟⎟⎠ , 𝐹 𝑝 =

⎛⎜⎜⎜⎜⎜⎝
̃︀𝛼̃︀𝑣̃︀𝛼̃︁𝑣𝑣̃︀𝛼̃︁𝜗𝑣̃︀𝛼(3̃︁𝑣𝑣̃︀𝑣 − 2̃︀𝑣3)̃︀𝛼(2̃︁𝜗𝑣̃︀𝑣 + ̃︀𝜗̃︁𝑣𝑣 − 2̃︀𝜗̃︀𝑣̃︀𝑣)

⎞⎟⎟⎟⎟⎟⎠ .

The source term accounting for the interphase motion and heat transfer is

𝑆𝑝 =

⎛⎜⎜⎜⎜⎜⎝
0̃︀𝛼(𝑢− ̃︀𝑣)/𝜏𝑣̃︀𝛼(𝑇 − ̃︀𝜗)/𝜏𝜗

2̃︀𝛼(𝑢̃︀𝑣 −̃︁𝑣𝑣)/𝜏𝑣̃︀𝛼(̃︀𝜗𝑢−̃︁𝜗𝑣)/𝜏𝑣 + ̃︀𝛼(𝑇̃︀𝑣 −̃︁𝜗𝑣)/𝜏𝜗

⎞⎟⎟⎟⎟⎟⎠ .

The source term accounting for the interphase motion and heat transfer in equation (15) is

𝑆𝑔 =

⎛⎝ 0

𝑚𝑝̃︀𝛼(̃︀𝑣 − 𝑢)/𝜏𝑣
𝛽𝑚𝑝̃︀𝛼(̃︀𝜗− 𝑇 )/𝜏𝜗 + 𝑚𝑝̃︀𝛼(̃︁𝑣𝑣 − 𝑢̃︀𝑣)/𝜏𝑣

⎞⎠ .

Equation (18) describing the motion and heat transfer in the dispersed phase, is of hyperbolic nature. In
quasi-linear form, equation (18) takes the form

𝜕𝑄𝑝

𝜕𝑡
+ 𝐴𝑝

𝜕𝑄𝑝

𝜕𝑥
= 𝑆𝑝, (19)

where 𝐴𝑝 = 𝜕𝐹 𝑝/𝜕𝑄𝑝 is the Jacobian. Jacobian looks as follows

𝐴𝑝 =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

−3̃︁𝑣𝑣̃︀𝑣 + 4̃︀𝑣3 3̃︁𝑣𝑣 − 6̃︀𝑣2 0 3̃︀𝑣 0

−̃︀𝜗̃︁𝑣𝑣 − 2̃︁𝜗𝑣̃︀𝑣 + 4̃︀𝜗̃︁𝑣𝑣 2̃︁𝜗𝑣 − 4̃︀𝜗̃︀𝑣 ̃︁𝑣𝑣 − 2̃︀𝑣2 ̃︀𝜗 2̃︀𝑣

⎞⎟⎟⎟⎟⎠ .
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Jacobian is represented in the form 𝐴𝑝 = 𝑅𝑝Λ𝑝𝐿𝑝, where Λ𝑝 is a diagonal matrix with Jacobian eigenvalues
along the main diagonal, and 𝐿𝑝 and 𝑅𝑝 are matrices consisting of left and right Jacobian eigenvectors, and
𝐿𝑝 = 𝑅−1

𝑝 . Jacobian has five real eigenvalues

𝜆1 = ̃︀𝑣, 𝜆2 = ̃︀𝑣 +
√

3𝜎, 𝜆3 = ̃︀𝑣 −√
3𝜎, 𝜆4 = ̃︀𝑣 + 𝜎, 𝜆5 = ̃︀𝑣 − 𝜎,

where

𝜎 = (̃︁𝑣𝑣 − ̃︀𝑣̃︀𝑣)
1/2

.

Given a non-negative kernel 𝐻Δ(𝑥), 𝜎 is a real number [26, 28], and this guarantees hyperbolicity of equation
(19). The right Jacobian eigenvectors have the form

𝑟1 =

⎛⎜⎜⎜⎜⎜⎝
1

𝜆1̃︀𝜗
𝜆2
1

𝜆1
̃︀𝜗

⎞⎟⎟⎟⎟⎟⎠ , 𝑟2 =

⎛⎜⎜⎜⎜⎝
1

𝜆2

𝜒2

𝜆2
2

𝜆2𝜒2

⎞⎟⎟⎟⎟⎠ , 𝑟3 =

⎛⎜⎜⎜⎜⎝
1

𝜆3

𝜒3

𝜆2
3

𝜆3𝜒3

⎞⎟⎟⎟⎟⎠ , 𝑟4 =

⎛⎜⎜⎜⎜⎝
0

0

1

0

𝜆4

⎞⎟⎟⎟⎟⎠ , 𝑟5 =

⎛⎜⎜⎜⎜⎝
0

0

1

0

𝜆5

⎞⎟⎟⎟⎟⎠ .

Here

𝜒2 = 𝜆2
(3𝜆2̃︁𝑣𝑣 − 9̃︁𝑣𝑣̃︀𝑣 + 8̃︀𝑣3 − 2𝜆2̃︀𝑣2)(𝜆2

̃︀𝜗− 4̃︀𝜗̃︀𝑣 + 3̃︁𝜗𝑣)

3(𝜆2̃︁𝑣𝑣 − 𝜆2̃︀𝑣2 − 2̃︁𝑣𝑣̃︀𝑣 + 2̃︀𝑣3)(3̃︁𝑣𝑣 − 4̃︀𝑣2)
;

𝜒3 = 𝜆3
(3𝜆3̃︁𝑣𝑣 − 9̃︁𝑣𝑣̃︀𝑣 + 8̃︀𝑣3 − 2𝜆3̃︀𝑣2)(𝜆3

̃︀𝜗− 4̃︀𝜗̃︀𝑣 + 3̃︁𝜗𝑣)

3(𝜆3̃︁𝑣𝑣 − 𝜆3̃︀𝑣2 − 2̃︁𝑣𝑣̃︀𝑣 + 2̃︀𝑣3)(3̃︁𝑣𝑣 − 4̃︀𝑣2)
.

Diagonalization of the Jacobian allows one to rewrite equation (19) in the characteristic form

𝜕𝑊 𝑝

𝜕𝑡
+ Λ𝑝

𝜕𝑊 𝑝

𝜕𝑥
= 𝑆𝑝, (20)

where 𝑊 𝑝 = 𝑅−1
𝑝 𝑄𝑝 represents a characteristic variables vector.

4. Numerical method. The finite volume method is used for discretization of the governing equations,
and the Godunov method is used to calculate fluxes across the boundaries of control volumes [33]. The Runge–
Kutta third order method is used for integration over time.

Let’s consider a uniform mesh consisting of 𝑁 cells with the cell centers located in points 𝑥𝑖 = 𝑖∆𝑥, where
𝑖 = 0, 1, . . . , 𝑁 . The conservative variables vector averaged over cell [𝑥𝑖−1/2, 𝑥𝑖+1/2] is determined by ratio

𝑄𝑖 =
1

∆𝑥𝑖

𝑥𝑖+1/2∫︁
𝑥𝑖−1/2

𝑄𝑑𝑥,

where ∆𝑥 = 𝑥𝑖+1/2 − 𝑥𝑖−1/2. In discrete form, with layer 𝑛 over time, equation (15) is written as follows

𝑄𝑛+1
𝑖 = 𝑄𝑛

𝑖 − ∆𝑡

∆𝑥

(︁
𝐹 𝑛

𝑖+1/2 − 𝐹 𝑛
𝑖−1/2

)︁
. (21)

The flows are found from the ratios

𝐹 𝑛
𝑖−1/2 = ̃︀𝐹 (𝑄𝑛

𝑖−1,𝑄
𝑛
𝑖 ), 𝐹 𝑛

𝑖+1/2 = ̃︀𝐹 (𝑄𝑛
𝑖 ,𝑄

𝑛
𝑖+1).

The tilde corresponds to numerical flow. The integration interval by time is chosen based on the condition

∆𝑡 = CFL
∆𝑥

max{|𝜆𝑖|}
,

where the number of Courant–Friedrichs–Lewy CFL 6 1/2.
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Using flux vector splitting, the Jacobian is represented as 𝐴 = 𝑅(Λ+ + Λ−)𝑅−1, 𝐴+ = 𝑅Λ+𝑅−1, 𝐴− =

𝑅Λ−𝑅−1, where matrices Λ+ and Λ− are diagonal matrices with positive and negative eigenvalues on the main
diagonal. Equation (21) takes the form

𝑄𝑛+1
𝑖 = 𝑄𝑛

𝑖 − ∆𝑡

∆𝑥

(︁
𝐴+∆𝑄𝑖−1/2 + 𝐴−∆𝑄𝑖+1/2

)︁
. (22)

Here

𝐴+∆𝑄𝑖−1/2 = 𝑅Λ+𝑅−1(𝑄𝑖 −𝑄𝑖−1)𝐴−∆𝑄𝑖+1/2 = 𝑅Λ−𝑅−1(𝑄𝑖+1 −𝑄𝑖) = 𝐴𝑄𝑖 − 𝐹 𝑛
𝑖−1/2;

𝐴−∆𝑄𝑖+1/2 = 𝑅Λ−𝑅−1(𝑄𝑖+1 −𝑄𝑖)𝐴
+∆𝑄𝑖−1/2 = 𝑅Λ−𝑅−1(𝑄1 −𝑄𝑖−1) = −𝐴𝑄𝑖 + 𝐹 𝑛

𝑖+1/2.

The difference scheme (23) takes the form

𝑄𝑛+1
𝑖 = 𝑄𝑛

𝑖 − ∆𝑡

∆𝑥

(︁ ̂︀𝐴+
𝑖−1/2∆𝑄𝑖−1/2 + ̂︀𝐴−

𝑖+1/2∆𝑄𝑖+1/2

)︁
. (23)

In the difference scheme (23), the components of 𝐴+ and 𝐴− matrices are located using Roe-averaged values.
For the gas phase, Roe averaging is set by the following ratios

̂︀𝑢𝑖−1/2 =
𝜌
1/2
𝑖−1𝑢𝑖−1 + 𝜌

1/2
𝑖 𝑢𝑖

𝜌
1/2
𝑖−1 + 𝜌

1/2
𝑖

;

̂︀𝐻𝑖−1/2 =
𝜌
1/2
𝑖−1𝐻𝑖−1 + 𝜌

1/2
𝑖 𝐻𝑖

𝜌
1/2
𝑖−1 + 𝜌

1/2
𝑖

=
(𝐸𝑖−1 + 𝑝𝑖−1)/𝜌

1/2
𝑖−1 + (𝐸𝑖 + 𝑝𝑖)/𝜌

1/2
𝑖

𝜌
1/2
𝑖−1 + 𝜌

1/2
𝑖

.

The speed of sound is found from the ratio

̂︀𝑐 =

[︂
(𝛾 − 1)

(︂ ̂︀𝐻 − 1

2
̂︀𝑢2

)︂]︂1/2
.

For the dispersed phase, averaging is set by the following ratios

̂︀𝑞𝑖−1/2 =
1

2
(𝑞𝑖−1 + 𝑞𝑖) ,

where 𝑞 is a generalized variable (𝑞 = ̃︀𝑣, ̃︀𝜗, ̃︁𝑣𝑣, ̃︁𝜗𝑣).
5. Computation results. Let’s consider the interaction of a steady-state subsonic and supersonic flow

of inviscid compressible gas with a layer of particles that fill a limited space and are stationary at the initial
moment in time.

5.1. Configuration of the computational region. Let’s consider a uniform layer of spherically shaped
solid particles blocking the cross-section of the channel which a uniform flow or a flat shock wave flows through
(Figure 1).

A two-phase flow is computed and the dynamics of the particle layer behind the shock wave are investigated.
Calculations are made at the interval of [−5, 6]. The particle layer consists of 8.6 · 104 particles, which are
stationary at the initial moment in time, evenly filling the 0 6 𝑥 6 0.3 interval. The computational mesh
contains 1000 points, of which about 100 belong to the particle layer.

Figure 1. Flow interaction with the particles layer
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Figure 2. Density (a), velocity (b), pressure (c) and temperature (d) distributions of the gas phase in
Case 1 at times 𝑡 = 0.275 (1); 0.550 (2); 0.825 (3)

Figure 3. Density (a), velocity (b) and temperature (c) distributions of the dispersed phase in Case 1 at
times 𝑡 = 0.275 (1); 0.550 (2); 0.825 (3)
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Air is chosen as the working medium. The ratio of specific heat capacities at constant pressure and
constant volume is 𝛾 = 1.4. Kinematic viscosity and the Prandtl number are assigned the following values
𝜈 = 1.57 · 10−5 m2/s and Pr = 0.72. The ratio of material particle heat capacity to the gas heat capacity at
constant pressure is assumed to be 𝛽 = 1. In practice, the dynamic relaxation and thermal relaxation times
turn out close to one another. It is assumed during the calculations that 𝜏𝑣 = 𝜏𝜗 = 3.569 s (in dimensionless
variables, the relaxation time corresponds to the Stokes number). Particle material density and particle mass
equal 𝜌𝑝 = 1000 kg/m3 and 𝑚𝑝 = 1.0055 · 10−4 kg respectively (particle diameter 𝑑𝑝 = 5.77 · 10−3 m).

On the left boundary, which is where working gas enters the computational domain, the Mach number is
set to 0.3 in the case of a subsonic flow (Case 1). In the case of a supersonic flow (Case 2), the left boundary
parameters are derived from the Rankine–Hugoniot relationships, so that Mach number behind the pressure
front equals 2.8. Free outflow conditions are used at the output boundary.

At the initial moment 𝑡 = 0, the gas flows at a uniform velocity (𝜌 = 1, 𝑝 = 1 and 𝑢 = 1 in dimensionless
variables). Particle velocity is set at zero, and the particle temperature is assumed to be the same as the gas
temperature. The correlation moments of speed and temperature of the dispersed phase are zero (̃︀𝑣 = 0, ̃︀𝜗 = 𝑇𝑔,̃︁𝑣𝑣 = 0, ̃︁𝜗𝑣 = 0). Numerical concentration of the dispersed phase is 2.885 · 105 m−3. Particles of different sizes
have different inertia rates and different speed and temperature lags in relation to the gas flow, which affects
the establishment of a quasi-stationary flow.

To validate the developed computational algorithm, a number of model tasks in unsteady one-dimensional
gas dynamics are solved. The various tasks are established in [34]. In this case, vanishingly small values (around
10−8 m−3) are used for the initial concentration of the dispersed phase.

5.2. Subsonic flow. The distributions of carrier gas parameters at different moments in time are shown
in Figure 2. The flow slows down in front of the particle layer, which results in a reduced speed and increase in
gas density, pressure and temperature. When the incoming flow encounters the particle layer, the particles that
are at rest at the initial point in time begin to accelerate, acquiring a non-zero speed and reducing resistance to
the gas flow, which leads to an increase in the carrier flow velocity. Behind the area occupied by the particles, the
flow density, velocity, pressure and temperature are restored to the corresponding values in the incoming flow.

The distributions of dispersed phase parameters at different points in time are shown in Figure 3, and the
distribution of correlation moments of the dispersed phase is presented in Figure 4. At time 𝑡 = 0.275 there is
no noticeable displacement of the particle layer, although the dispersed phase density at the left boundary of
the layer is slightly higher than at its right boundary. Within the area occupied by the particles, the speed of
the dispersed phase is distributed unevenly. Near the right boundary of the layer, the speed of the dispersed
phase increases as the carrier gas accelerates in this area. Particles located near the left boundary of the layer
have the highest velocity, as their interaction with the gas flow begins at the moment the gas reaches the area
occupied by the particles. The temperature of the dispersed phase remains more or less constant. Uneven
velocity distribution along the particle layer (higher at the left boundary and lower at the right boundary)
results in different heat transfer rates between the gas and particles located near the left and right boundary
of the layer. This results in a slight decrease in temperature of the dispersed phase near the right boundary of
the layer. Distributions of the correlation moments of velocity and velocity-temperature of the dispersed phase
are qualitatively similar.

Figure 4. Distributions of the correlation moment of velocity (a) and the correlation moment of velocity
and temperature (b) of the dispersed phase in Case 1 at time 𝑡 = 0.275 (1); 0.550 (2); 0.825 (3)
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Figure 5. Shock wave interaction with a particle cloud (SW𝐼 is the incoming shock wave, SW𝑅 is the
reflected shock wave, SW𝑇 is the transmitted shock wave, CD is the contact discontinuity, RW is the

rarefaction wave, EW is the expansion wave fan)

Figure 6. Density (a), velocity (b), pressure (c) and temperature (d) distributions of the gas phase in
Case 2 at times 𝑡 = 0.275 (1); 0.550 (2); 0.825 (3)

5.3. Supersonic flow. Based on the analysis of (𝑥, 𝑡) diagram shown in Figure 5 (particles are considered
to be frozen in space), which was produced as a result of computations, the interaction between the shock wave
and the particle layer can be described as follows [35]. When the incoming shock wave SW𝐼 reaches the left
boundary of the particle layer and starts penetrating it, a reflected shock wave SW𝑅 is formed, which spreads
in the opposite direction of the incoming shock wave, and a transmitted shock wave SW𝑇 , which moves in the
same direction as the incoming shock wave. The transmitted shock wave is followed by the expansion wave fan
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Figure 7. Density (a), velocity (b) and temperature (c) distributions of the dispersed phase in Case 2 at
times 𝑡 = 0.275 (1); 0.550 (2); 0.825 (3)

Figure 8. Distributions of the correlation moment of velocity (a) and the correlation moment of velocity
and temperature (b) of the dispersed phase in Case 2 at times 𝑡 = 0.275 (1); 0.550 (2); 0.825 (3)

EW inside the layer (negative pressure gradient), in which the gas is accelerated, so the flow reaches supersonic
speed near the right boundary of the particle layer. When the transmitted shock wave exits the particle layer,
another rarefaction wave fan RW is formed, and a contact discontinuity CD exits the layer together with the
transmitted shock wave, which separates the transmitted shock wave from the rarefaction waves. Interaction
between the expansion wave fan EW and the rarefaction wave RW results in the establishment of a constant
pressure gradient in the particle layer. The intensity of the transmitted shock wave decreases compared to the
incoming shock wave, as some of the gas energy is spent on accelerating the particles. Over time, a constant
pressure gradient is established in the particle layer.
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The calculations performed allow identification of six characteristic flow areas (Figure 5: 0 — undisturbed
gas area; 1 — area corresponding to the gas behind the transmitted shock wave SW𝑇 ; 2 — area corresponding
to the gas between contact discontinuity CD and the right edge of the particle layer; 3 — area occupied by the
expansion wave fan EW; 4 — area corresponding to the gas behind the reflected shock wave SW𝑅; 5 — area
corresponding to the conditions at the front of the incoming shock wave SW𝐼 .

The distributions of carrier gas parameters at different moments in time are shown in Figure 6. The
interaction of supersonic gas flow with the particle layer results in the formation of a shock wave, which is
followed by a sudden decrease in gas velocity to subsonic values and an increase in its density, pressure and
temperature. Behind the shock wave front, the carrier flow interacts with the particles. In the area occupied
by the particles, the carrier flow rate remains approximately constant while the gas density, pressure and
temperature decrease. Particles that are at rest at the initial moment in time get entrained by the gas flow,
gaining a non-zero speed and providing less resistance to the gas flow. At the right boundary of the particle
layer, a rarefaction wave is observed, where the gas flow velocity increases and density, pressure and temperature
decrease. Behind the particle layer, the gas parameters never reach the values they had in the undisturbed flow,
which is caused by non-isentropic energy losses at the shock wave front. Behind the rarefaction wave fan, the gas
velocity and pressure are lower than in the undisturbed flow. The density and temperature behind the expansion
wave fan experience minor fluctuations as a result of contact discontinuity, which moves downstream at a speed
lower than that of the shock wave induced by the particle layer. To the left of the contact discontinuity, the
gas temperature is higher and its density is lower than the temperature and density of the gas to the right of
the contact discontinuity. The contact discontinuity occurs as a result of a sudden change in gas density and
temperature at the shock wave front moving downstream.

Comparison of gas parameter distributions at different points in time shows that the position of the shock
wave front induced by the particle layer remains virtually unchanged in space, but the magnitude of the flow
parameter fluctuations increases over time.

The distributions of dispersed phase parameters at different points in time are shown in Figure 7, and the
distribution of correlation moments of the dispersed phase are presented in Figure 8. At time 𝑡 = 0.275, the
particle velocity near the left boundary of the layer exceeds the velocity of the particles near its right boundary.
Uneven velocity distribution results in uneven density distribution in the dispersed phase, which is much higher
at the left boundary of the layer than on its right boundary. An increase in the gas temperature at the left
boundary of the layer leads to an increase in the temperature of the dispersed phase. Distributions of the
correlation moments of velocity and velocity-temperature of the dispersed phase are qualitatively similar.

6. Conclusion. A mathematical model describing unsteady flow of gas with inert particles is constructed
within the model of interpenetrating continuums. The gas and dispersed phases are described by sets of equations
expressing the laws of mass, momentum and energy conservation, while interactions between the phases are
taken into account using source terms. Hyperbolic equations are used to describe the gas and dispersed phases,
allowing the recording in conservative form, which means Godunov type methods can be used to find numerical
solutions.

Numerical simulation of flow interaction at subsonic and supersonic speeds is performed, with a layer of
particles being stationary at the initial point in time. Shock-wave flow structure and space-time dependencies
of particle concentration and other flow parameters are shown. The results obtained allow estimating the shock
wave attenuation caused by interaction with the dispersed phase.

The research was carried out with the financial support of the Russian Science Foundation (project No. 19–
71–10019).
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