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ONE-DIMENSIONAL FINITE DIFFERENCE SCHEMES TO IMPLEMENT THE
SPLITTING METHOD FOR AXISYMMETRIC EQUATIONS IN THE DYNAMICS

OF ELASTIC MEDIUM

V. M. Sadovskii1, O. V. Sadovskaya2, and E.A. Efimov3

We construct efficient finite difference shock-capturing schemes for the solution of direct seismic
problems in axisymmetric formulation. When parallelizing the algorithms implementing the schemes
on multiprocessor computing systems, the two-cyclic splitting method with respect to the spatial
variables is used. One-dimensional systems of equations are solved at the stages of splitting on the
basis of explicit grid-characteristic schemes and an implicit finite difference scheme of the “predictor–
corrector” type with controlled artificial energy dissipation. The verification of algorithms and pro-
grams is fulfilled on the exact solutions of one-dimensional problems describing traveling monochro-
matic waves. The comparison of the results showed the advantages of the scheme with controlled
energy dissipation in terms of the accuracy of computing smooth solutions and the advisability of
application of explicit monotone schemes when calculating discontinuities.

Keywords: elastic medium, direct seismic problem, cylindrical waves, finite difference scheme, splitting
method, monotonicity, dissipativity, parallel computing.

1. Introduction. When performing numerical modeling of seismic wave propagation in plane layered soil
masses under the action of localized pulse or periodic perturbations, it is advisable to apply methods taking into
account axial symmetry of the problems. Compared to three-dimensional spatial formulation of the problem,
this enables a reduction of computational costs, with a negligible loss in precision caused by heterogeneity
of coefficients in the constitutive equations (dependence of coefficients on the radius). In the case of several
sources of disturbances acting together, either synchronously or with some time lag, the desired wave fields can
be constructed by superimposing axisymmetric fields generated by individual sources. We apply this approach
in our works on mathematical modeling of electromagnetic seismic pulse source Yenisei [1–3].

The key problem in the development of computational algorithms for solving axisymmetric problems is the
proper selection of ways to approximate lowest terms in the equations of dynamic theory of elasticity written
in the cylindrical coordinate system, which cause decay of the equations along the axis of symmetry. Our goal
is to choose the right method, while remaining within the framework of the technology for constructing the
Godunov conservative discontinuity decomposition scheme [4, 5], which has proven itself in solving plane and
spatial problems of dynamic theory of elasticity, in modeling different resistance to compression and tension of
granular and porous materials [6–9], wave propagation and cracking in blocky media [10–13] and other nonlinear
processes.

Previously, methods for solving axisymmetric equations of dynamics of elastic media were developed and
applied by many authors. In [14], a method of characteristics was implemented to analyze one-dimensional mo-
tions with cylindrical waves. Grid-characteristic methods for solving spatial problems were developed in [15–17].
Finite difference schemes for solving the plane problem equations and spatial equations based on the charac-
teristic method, which allow calculating the discontinuities of velocities and stresses, were proposed in [18–20].
In [21–23] these methods were applied to the analysis of wave processes in linearly elastic, viscoelastic and
elastic-plastic media. Methods based on axisymmetric equations were used in the numerical simulation of the
dynamics of rotational plates and shells in [24–28].
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2. Equations of axisymmetric motion. The equations of dynamic elasticity theory with axial symme-
try in velocities and stresses can be written in the form of the following system:

𝜌 𝑟
𝜕𝑣𝑟
𝜕𝑡

=
𝜕(𝑟 𝜎𝑟)

𝜕𝑟
+

𝜕(𝑟 𝜎𝑟𝑧)

𝜕𝑧
− 𝜎𝜙 , 𝜌 𝑟

𝜕𝑣𝜙
𝜕𝑡

=
𝜕(𝑟 𝜎𝑟𝜙)

𝜕𝑟
+

𝜕(𝑟 𝜎𝜙𝑧)

𝜕𝑧
+ 𝜎𝑟𝜙 ,

𝜌 𝑟
𝜕𝑣𝑧
𝜕𝑡

=
𝜕(𝑟 𝜎𝑟𝑧)

𝜕𝑟
+

𝜕(𝑟 𝜎𝑧)

𝜕𝑧
,

1

𝐸

𝜕𝜎𝑟

𝜕𝑡
− 𝜈

𝐸

𝜕

𝜕𝑡

(︀
𝜎𝜙 + 𝜎𝑧

)︀
=

𝜕𝑣𝑟
𝜕𝑟

,

1

𝐸

𝜕𝜎𝜙

𝜕𝑡
− 𝜈

𝐸

𝜕

𝜕𝑡

(︀
𝜎𝑧 + 𝜎𝑟

)︀
=

𝑣𝑟
𝑟
,

1

𝐸

𝜕𝜎𝑧

𝜕𝑡
− 𝜈

𝐸

𝜕

𝜕𝑡

(︀
𝜎𝑟 + 𝜎𝜙

)︀
=

𝜕𝑣𝑧
𝜕𝑧

,

1

𝜇

𝜕𝜎𝑟𝜙

𝜕𝑡
=

𝜕𝑣𝜙
𝜕𝑟

− 𝑣𝜙
𝑟

,
1

𝜇

𝜕𝜎𝑟𝑧

𝜕𝑡
=

𝜕𝑣𝑧
𝜕𝑟

+
𝜕𝑣𝑟
𝜕𝑧

,
1

𝜇

𝜕𝜎𝜙𝑧

𝜕𝑡
=

𝜕𝑣𝜙
𝜕𝑧

.

(1)

Here 𝜌 is the density of the medium, 𝐸 = 2𝜇 (1 + 𝜈) is Young’s modulus, 𝜇 and 𝜈 are the shear modulus and
Poisson’s ratio; the 𝑟 and 𝑧 axes of the cylindrical coordinate system are directed along the radius and the axis
of symmetry, respectively. This form of notation is convenient for deriving the energy balance equation. In
order to accomplish this, it is necessary to multiply the equations of motion by 𝑣𝑟, 𝑣𝜙, 𝑣𝑧 and to multiply the
constitutive equations by 𝑟𝜎𝑟, 𝑟𝜎𝜙, 𝑟𝜎𝑧, 𝑟𝜎𝑟𝜙, 𝑟𝜎𝑟𝑧, 𝑟𝜎𝜙𝑧, respectively, and then to sum the right and left-hand
sides of the equations. We arrive at the following equality:

𝜕

𝜕𝑡

(︂
𝜌 𝑟

𝑣2𝑟 + 𝑣2𝜙 + 𝑣2𝑧
2

+ 𝑟𝑊

)︂
=

𝜕

𝜕𝑟

(︁
𝑟 𝑣𝑟 𝜎𝑟 + 𝑟 𝑣𝜙 𝜎𝑟𝜙 + 𝑟 𝑣𝑧 𝜎𝑟𝑧

)︁
+

𝜕

𝜕𝑧

(︁
𝑟 𝑣𝑟 𝜎𝑟𝑧 + 𝑟 𝑣𝜙 𝜎𝜙𝑧 + 𝑟 𝑣𝑧 𝜎𝑧

)︁
, (2)

where 𝑊 is the elastic potential that can be represented as the quadratic form with respect to the stresses:

4𝜇𝑊 = 𝜎2
𝑟 + 𝜎2

𝜙 + 𝜎2
𝑧 + 2𝜎2

𝑟𝜙 + 2𝜎2
𝑟𝑧 + 2𝜎2

𝜙𝑧 −
𝜈

1 + 𝜈

(︀
𝜎𝑟 + 𝜎𝜙 + 𝜎𝑧

)︀2
.

The system expressed by (1) is hyperbolic. It can be decomposed into the following two independent
subsystems: the first subsystem consists of the equations whose numbers counted from left to right are 1, 3,
4, 5, 6, and 8 and describes the planar motion, whereas the second one (equations 2, 7, and 9) describes the
torsional motion. The planar motion is a superposition of longitudinal and transverse waves propagating with
the velocities

𝑐𝑝 =

√︂
2𝜇

𝜌

1 − 𝜈

1 − 2 𝜈
, 𝑐𝑠 =

√︂
𝜇

𝜌
,

respectively. The torsional waves propagate with the velocity 𝑐𝑠.
When studying seismic problems, we apply the method of two-cyclic splitting by spatial variables to the

solution of (1), in which a series of one-dimensional problems are solved at different stages in parallel mode.
The advantage of two-cyclic splitting method compared to the usual splitting method (the total approximation
method) is that it preserves the second order of accuracy when using second-order difference schemes to solve
one-dimensional systems [29]. Numerical implementation of the stages of the splitting method in the direction
of the symmetry axis 𝑧 does not cause any difficulties, since after reducing the corresponding one-dimensional
equations by 𝑟 we arrive at a system of equations with constant coefficients; this system can be decomposed
into subsystems describing the plane longitudinal and transverse elastic waves. The Godunov discontinuity
decomposition scheme [4] or the grid-characteristic difference scheme with limiting reconstruction of Riemann
invariants [30] (based on the same idea) are both applicable to their solution.

The one-dimensional system of equations in the direction of the radial axis 𝑟 is decomposed into three
subsystems describing the longitudinal, transverse, and torsional waves. The direct application of standard
finite difference schemes based on the approximation of equations in the plane elasticity problem with addition
of derivative-free terms leads to undesirable effects such as asymptotic instability with accumulation of rounding
errors during calculations with a large number of time steps or to momentum and energy disbalances. This calls
into question the reliability of the numerical results obtained.

A universal way to deal with such effects is to use the fully conservative finite difference schemes [31, 32]
in combination with the artificial viscosity method [33]; this method allows one to smooth the oscillations of
numerical solutions when calculating discontinuities due to the schematic energy dissipation. For the dynamic
elasticity theory equations, a general approach to constructing conservative numerical methods with controlled
energy dissipation was developed by Ivanov [34, 35]. This approach can be applied to subsystems of equa-
tions describing the one-dimensional motions of an elastic medium with longitudinal, transverse, and torsional
cylindrical waves.
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3. Longitudinal cylindrical waves. The longitudinal wave equations can be written in an equivalent
form via the Lamé elasticity parameters 𝜆 = 2𝜇𝜈/(1 − 2𝜈) and 𝜇:

𝜌 𝑟
𝜕𝑣𝑟
𝜕𝑡

=
𝜕(𝑟 𝜎𝑟)

𝜕𝑟
− 𝜎𝜙 ,

𝜕𝜎𝑟

𝜕𝑡
= (𝜆 + 2𝜇)

𝜕𝑣𝑟
𝜕𝑟

+ 𝜆
𝑣𝑟
𝑟
,

𝜕𝜎𝜙

𝜕𝑡
= 𝜆

𝜕𝑣𝑟
𝜕𝑟

+ (𝜆 + 2𝜇)
𝑣𝑟
𝑟
,

𝜕𝜎𝑧

𝜕𝑡
= 𝜆

(︂
𝜕𝑣𝑟
𝜕𝑟

+
𝑣𝑟
𝑟

)︂
.

(3)

The energy balance equation (2) for this system takes the following form:

𝜕

𝜕𝑡

(︂
𝜌 𝑟

𝑣2𝑟
2

+ 𝑟𝑊

)︂
=

𝜕(𝑟 𝑣𝑟 𝜎𝑟)

𝜕𝑟
.

The integration of (3) over a spatial-temporal rectangular grid leads to the following discrete equations of the
“corrector” step:

𝜌 𝑟0
𝑣𝑟 − 𝑣𝑟

𝜏
=

𝑟+𝜎+
𝑟 − 𝑟−𝜎−

𝑟

ℎ
− 𝜎0

𝜙 ,
𝜎̂𝑟 − 𝜎𝑟

𝜏
= (𝜆 + 2𝜇)

𝑣+𝑟 − 𝑣−𝑟
ℎ

+ 𝜆
𝑣0𝑟
𝑟0

,

𝜎̂𝜙 − 𝜎𝜙

𝜏
= 𝜆

𝑣+𝑟 − 𝑣−𝑟
ℎ

+ (𝜆 + 2𝜇)
𝑣0𝑟
𝑟0

,
𝜎̂𝑧 − 𝜎𝑧

𝜏
= 𝜆

𝑣+𝑟 − 𝑣−𝑟
ℎ

+ 𝜆
𝑣0𝑟
𝑟0

,

(4)

where the capped values refer to the middle of cells in the upper time layer, whereas the uncapped values
refer to the middle of cells in the lower layer; the values with “±” upper indices refer to the right and left cell
boundaries; 𝑟0 = (𝑟+ + 𝑟−)/2. The velocity 𝑣0𝑟 and the stress 𝜎0

𝜙 as well as the values 𝜎±
𝑟 and 𝑣±𝑟 are defined at

the “predictor” step.
The difference analogue of the energy balance equation (2) for longitudinal waves is obtained by multiplying

equations (4) by (𝑣𝑟 + 𝑣𝑟)/2 and 𝑟0(𝜎̂𝑟 + 𝜎𝑟)/2, 𝑟0(𝜎̂𝜙 + 𝜎𝜙)/2, 𝑟0(𝜎̂𝑧 + 𝜎𝑧)/2, respectively:

𝜌 𝑟0
𝑣2𝑟 − 𝑣2𝑟

2 𝜏
+ 𝑟0

𝑊̂ −𝑊

𝜏
=

𝑟+𝑣+𝑟 𝜎
+
𝑟 − 𝑟−𝑣−𝑟 𝜎

−
𝑟

ℎ
−𝐷 ,

𝐷 =
𝑟+𝜎+

𝑟 − 𝑟−𝜎−
𝑟

ℎ

(︂
𝑣+𝑟 + 𝑣−𝑟

2
− 𝑣𝑟 + 𝑣𝑟

2

)︂
+

𝑣+𝑟 − 𝑣−𝑟
ℎ

(︂
𝑟+𝜎+

𝑟 + 𝑟−𝜎−
𝑟

2
− 𝑟0

𝜎̂𝑟 + 𝜎𝑟

2

)︂
+ 𝜎0

𝜙

𝑣𝑟 + 𝑣𝑟
2

− 𝑣0𝑟
𝜎̂𝜙 + 𝜎𝜙

2
.

The idea of controlled energy dissipation [34] is that the expression for 𝐷 is given explicitly as a positive-definite
quadratic form. This form can be identically equal to zero. Then, a nondissipative (fully conservative) scheme
is obtained.

Now we take the quadratic form as 𝐷 = 𝛾 (𝑣+𝑟 − 𝑣−𝑟 )2/ℎ2 with a free parameter 𝛾 > 0 and assume that

𝑣0𝑟 =
𝑣𝑟 + 𝑣𝑟

2
=

𝑣+𝑟 + 𝑣−𝑟
2

, 𝜎0
𝜙 =

𝜎̂𝜙 + 𝜎𝜙

2
=

𝜎+
𝜙 + 𝜎−

𝜙

2
,

𝑟+𝜎+
𝑟 + 𝑟−𝜎−

𝑟

2
− 𝑟0

𝜎̂𝑟 + 𝜎𝑟

2
= 𝛾

𝑣+𝑟 − 𝑣−𝑟
ℎ

. (5)

In this case, the artificial energy dissipation is non-negative, which automatically ensures the stability of com-
putations; this dissipation decreases with grid refinement and depends only on the medium strain rate. If 𝛾 = 0,
then the scheme is fully conservative and the energy conservation law is fulfilled at the discrete level in this
scheme. In practice, however, it is not suitable for calculating discontinuous solutions and solutions with large
gradients because of its non-monotonicity.

Taking into account (4), we can reduce the closing equations of the scheme with controlled energy dissi-
pation used to calculate the values with “±” indices at the “predictor” step to the following system:

𝑟+𝜎+
𝑟 − 𝑟−𝜎−

𝑟 = 𝑎𝑗−1/2 𝑣
+
𝑟 + 𝑏𝑗−1/2 𝑣

−
𝑟 + 𝑓𝑗−1/2 , 𝑟+𝜎+

𝑟 + 𝑟−𝜎−
𝑟 = 𝑐𝑗−1/2 𝑣

+
𝑟 + 𝑑𝑗−1/2 𝑣

−
𝑟 + 𝑔𝑗−1/2 .

Here 𝑎𝑗−1/2, 𝑏𝑗−1/2, 𝑐𝑗−1/2, 𝑑𝑗−1/2, 𝑓𝑗−1/2, and 𝑔𝑗−1/2 are the coefficients dependent on the cell number 𝑗 =

1, 2, . . . , 𝑛 (the fractional indices refer to the centers of cells):

𝑎𝑗−1/2 =
𝜌 ℎ 𝑟0

𝜏
+ (𝜆 + 2𝜇)

𝜏 ℎ

4 𝑟0
+ 𝜆

𝜏

2
, 𝑏𝑗−1/2 =

𝜌 ℎ 𝑟0

𝜏
+ (𝜆 + 2𝜇)

𝜏 ℎ

4 𝑟0
− 𝜆

𝜏

2
, 𝑓𝑗−1/2 = ℎ𝜎𝜙 − 2ℎ 𝑟0

𝜌 𝑣𝑟
𝜏

,

𝑐𝑗−1/2 = 𝜆
𝜏

2
+ (𝜆 + 2𝜇)

𝜏 𝑟0

ℎ
+

2 𝛾

ℎ
, 𝑑𝑗−1/2 = 𝜆

𝜏

2
− (𝜆 + 2𝜇)

𝜏 𝑟0

ℎ
− 2 𝛾

ℎ
, 𝑔𝑗−1/2 = 2 𝑟0𝜎𝑟 .
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Hence,
2 𝑟+𝜎+

𝑟 =
(︀
𝑎𝑗−1/2 + 𝑐𝑗−1/2

)︀
𝑣+𝑟 +

(︀
𝑏𝑗−1/2 + 𝑑𝑗−1/2

)︀
𝑣−𝑟 + 𝑓𝑗−1/2 + 𝑔𝑗−1/2 ,

2 𝑟−𝜎−
𝑟 =

(︀
𝑐𝑗−1/2 − 𝑎𝑗−1/2

)︀
𝑣+𝑟 +

(︀
𝑑𝑗−1/2 − 𝑏𝑗−1/2

)︀
𝑣−𝑟 + 𝑔𝑗−1/2 − 𝑓𝑗−1/2 .

(6)

Equating these expressions after shifting by the index 𝑗, we arrive at the following tridiagonal system of equations
to determine the velocities 𝑣+𝑟 = 𝑣𝑗𝑟 and 𝑣−𝑟 = 𝑣𝑗−1

𝑟 at the cell boundaries:

𝐴𝑗 𝑣
𝑗+1
𝑟 + 𝐶𝑗 𝑣

𝑗
𝑟 + 𝐵𝑗 𝑣

𝑗−1
𝑟 = 𝐹𝑗 , (7)

where
𝐴𝑗 = 𝑐𝑗+1/2 − 𝑎𝑗+1/2 , 𝐶𝑗 = 𝑑𝑗+1/2 − 𝑏𝑗+1/2 − 𝑎𝑗−1/2 − 𝑐𝑗−1/2 ,

𝐵𝑗 = − 𝑏𝑗−1/2 − 𝑑𝑗−1/2 , 𝐹𝑗 = 𝑓𝑗+1/2 + 𝑓𝑗−1/2 − 𝑔𝑗+1/2 + 𝑔𝑗−1/2 .

The boundary condition 𝑣0𝑟 = 0 is added to the system of equations for internal nodes (7) on the symmetry axis
and the boundary condition 𝑣𝑛𝑟 = 𝑣 is also added if the velocity 𝑣 of particles is given on the right boundary
𝑟 = 𝑅 or the condition(︀

𝑎𝑛−1/2 + 𝑐𝑛−1/2

)︀
𝑣𝑛𝑟 +

(︀
𝑏𝑛−1/2 + 𝑑𝑛−1/2

)︀
𝑣𝑛−1
𝑟 + 𝑓𝑛−1/2 + 𝑔𝑛−1/2 = 2𝑅𝜎,

resulting from (6) is also added if the external stress 𝜎 is given at the boundary. In both these cases, the system
of equations with boundary conditions is solved by the Thomas algorithm.

Thus, the algorithm of transition to a new temporal layer in the numerical implementation of the scheme
begins with the calculation of the values 𝑣±𝑟 and 𝜎±

𝑟 using equations (6) and (7) of the “predictor” step and,
then, 𝑣0𝑟 and 𝜎0

𝜙 can be determined by (5). The final calculations of 𝑣𝑟, 𝜎̂𝑟, 𝜎̂𝜙 and 𝜎̂𝑧 are based on equations
(4) of the “corrector” step.

For comparison, let us consider three variants of explicit finite difference schemes based on the solution
of the problem on disappearance of an arbitrary discontinuity. The schemes are constructed by approximating
the first equation in system (3) written in an equivalent (non-conservative) form:

𝜌
𝜕𝑣𝑟
𝜕𝑡

=
𝜕𝜎𝑟

𝜕𝑟
+

𝜎𝑟 − 𝜎𝜙

𝑟
.

The “predictor–corrector” scheme with explicit approximation of the lowest terms

𝜌
𝑣𝑟 − 𝑣𝑟

𝜏
=

𝜎+
𝑟 − 𝜎−

𝑟

ℎ
+

𝜎𝑟 − 𝜎𝜙

𝑟0
,

𝜎̂𝑟 − 𝜎𝑟

𝜏
= (𝜆 + 2𝜇)

𝑣+𝑟 − 𝑣−𝑟
ℎ

+ 𝜆
𝑣𝑟
𝑟0

,

𝜎̂𝜙 − 𝜎𝜙

𝜏
= 𝜆

𝑣+𝑟 − 𝑣−𝑟
ℎ

+ (𝜆 + 2𝜇)
𝑣𝑟
𝑟0

,
𝜎̂𝑧 − 𝜎𝑧

𝜏
= 𝜆

(︂
𝑣+𝑟 − 𝑣−𝑟

ℎ
+

𝑣𝑟
𝑟0

)︂
,

𝑣+𝑟 − 𝜎+
𝑟

𝜌 𝑐𝑝
= 𝑣𝑟 −

𝜎𝑟

𝜌 𝑐𝑝
, 𝑣−𝑟 +

𝜎−
𝑟

𝜌 𝑐𝑝
= 𝑣𝑧 +

𝜎𝑟

𝜌 𝑐𝑝

is suitable for calculations only if the Courant number 𝐾𝑝 = 𝑐𝑝 𝜏/ℎ belongs to the range from 0 to 0.8. When
this number is greater than 0.8, parasitic oscillations appear near the axis of symmetry. The oscillations grow
in amplitude indefinitely with increasing 𝐾𝑝 from 0.9 to 1, which results in a distortion of the solution. If 𝐾𝑝 is
small, then the numerical viscosity leads to the situation when the solution becomes oversmoothed. For these
two reasons, this scheme is not advisable to use in these calculations.

The scheme with implicit approximation of the lowest terms is obtained by substituting the stresses 𝜎𝑟,
𝜎𝜙 and the velocity 𝑣𝑟 in the lowest terms with 𝜎̂𝑟, 𝜎̂𝜙 and 𝑣𝑟. This scheme is stable and monotonic over the
whole range 0 < 𝐾𝑝 6 1, but it also has an excessive smoothing effect due to the scheme viscosity when the
Courant number is sufficiently small.

The implicit Crank–Nicolson approximation scheme with the replacement of 𝜎𝑟, 𝜎𝜙 and 𝑣𝑟 by

𝜎̂𝑟 + 𝜎𝑟

2
,

𝜎̂𝜙 + 𝜎𝜙

2
,

𝑣𝑟 + 𝑣𝑟
2

has advantages over the explicit and implicit schemes with respect to the accuracy of numerical solution.
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The computational algorithms implementing the schemes were verified by comparing the numerical results
with the exact solution describing monochromatic waves of a prescribed frequency 𝜔. This exact solution can
be obtained by separation of variables:

𝑣𝑟 =
𝜎0

𝜌 𝑐𝑝
sin𝜔𝑡 𝐽1(𝜉𝑝) , 𝜎𝑟 =

𝜎0

𝜆 + 2𝜇
cos𝜔𝑡

(︂
(𝜆 + 2𝜇) 𝐽2(𝜉𝑝) − 2 (𝜆 + 𝜇)

𝜉𝑝
𝐽1(𝜉𝑝)

)︂
,

𝜎𝜙 =
𝜎0

𝜆 + 2𝜇
cos𝜔𝑡

(︂
𝜆𝐽2(𝜉𝑝) − 2 (𝜆 + 𝜇)

𝜉𝑝
𝐽1(𝜉𝑝)

)︂
, 𝜎𝑧 =

𝜆𝜎0

𝜆 + 2𝜇
cos𝜔𝑡

(︂
𝐽2(𝜉𝑝) − 2

𝜉
𝐽1(𝜉𝑝)

)︂
,

where 𝜉𝑝 = 𝜔 𝑟/𝑐𝑝 is a dimensionless variable and 𝐽𝑘(𝑥) are the Bessel functions of integer order 𝑘.
Tables 1–4 show the relative errors of the schemes for different frequencies depending on the Courant num-

ber. In these calculations, the dimensionless frequency 𝜔̄ = 𝜔𝑅/𝑐𝑠 (where 𝑅 is the radius of the computational
domain) varied from 10 to 50. At these frequencies, the number of half-waves in the computational domain
varies from one and a half to seven and a half (Fig. 1).

The errors of numerical solution were calculated relative to the discrete analog of the norm of the space
𝐿∞

(︀
0, 𝑇 ;𝐿2(0, 𝑅)

)︀
:

⃦⃦(︀
𝑣𝑟, 𝜎𝑟, 𝜎𝜙, 𝜎𝑧

)︀⃦⃦
= sup

0<𝑡<𝑇

⎯⎸⎸⎸⎷𝜋

𝑅∫︁
0

(︂
𝜌
𝑣2𝑟
2

+ 𝑊

)︂
𝑑𝑟2 .

Table 1

Relative errors for the nondissipative scheme: 𝛾 = 0 (longitudinal waves)
H
HHH𝐾𝑝

𝜔̄ 10 20 30 40 50

0.5 0.00023 0.00110 0.00837 0.01408 0.03500
0.75 0.00009 0.00045 0.00405 0.00701 0.01818
1 0.00019 0.00081 0.00201 0.00349 0.00563

1.25 0.00049 0.00210 0.00977 0.01621 0.03527
1.5 0.00085 0.00372 0.01920 0.03209 0.07125

Table 2

Relative errors for the scheme with explicit approximation of the lowest terms (longitudinal waves)
H
HHH𝐾𝑝

𝜔̄ 10 20 30 40 50

0.5 0.04334 0.09600 0.37513 0.40646 0.63148
0.75 0.02148 0.05053 0.19970 0.25226 0.39363

Table 3

Relative errors for the scheme with implicit approximation of the lowest terms (longitudinal waves)
HHHH𝐾𝑝

𝜔̄ 10 20 30 40 50

0.5 0.04802 0.10547 0.39297 0.41076 0.65137
0.75 0.02860 0.06545 0.23341 0.26373 0.44424
1 0.01025 0.02666 0.03320 0.04613 0.05591

Table 4

Relative errors for the scheme with Crank–Nicolson approximation (longitudinal waves)
HH

HH𝐾𝑝

𝜔̄ 10 20 30 40 50

0.5 0.03824 0.09015 0.36576 0.40030 0.62509
0.75 0.01350 0.04288 0.18149 0.23903 0.37536
0.97 0.00912 0.02940 0.02788 0.05726 0.04975
1 0.01220 0.03379 0.05646 0.06663 0.12026
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Figure 1. Exact solution with longitudinal cylindrical waves for dimensionless velocity

The time 𝑇 was prescribed in such a way that, in the interval (0, 𝑇 ), the longitudinal cylindrical wave passes
the distance of 2𝑅 with a single reflection from the symmetry axis.

The calculations were performed on a finite difference grid of 200 cells. Our analysis of the table data
shows that the numerical solution using the scheme with implicit approximation of the lowest terms and the
scheme with Crank–Nicolson approximation loses accuracy if one half-wave contains less than 60–70 grid cells.
The nondissipative scheme works well at all frequencies in the range being considered.

Figures 2 and 3 show the velocity profiles behind the front of a strong discontinuity caused by sudden

Figure 2. Velocity profiles behind the discontinuity front:
Crank–Nicolson approximation scheme (longitudinal waves)
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Figure 3. Velocity profiles behind the discontinuity front:
nondissipative scheme (longitudinal waves)

application of a constant stress at the domain boundary. The results shown in Fig. 2 are obtained by the Crank–
Nicolson approximation scheme, in Fig. 3 — by the nondissipative scheme. In the case of the nondissipative
scheme, the velocity and stress profiles are monotonic only for 𝐾𝑝 = 1, but parasitic oscillations appear before
the wave front for 𝐾𝑝 = 0.9. These parasitic oscillations increase strongly as the Courant number deviates
from the value of one. The oscillations can be smoothed by introducing the artificial energy dissipation and by
selecting a certain value of the parameter 𝛾 > 0 or by smoothing the diagram of sharp stress application on the
boundary by raising the stress level in a monotonic manner from zero to a specified constant value over at least
10 grid steps in time.

The smoothed velocity profiles obtained in the sudden loading calculations according to the controlled
artificial energy dissipation scheme for 𝛾 = 0.0005 are shown in Fig. 4. We should note that the maximum
wave amplitudes for fixed time moments on the plots are almost independent of the Courant number. This is
an indicator of the scheme’s good quality. When the Courant number changes, however, the position of the
discontinuity front shifts slightly.

In order to parallelize computations on cluster architectures when solving the problems of large dimension
on the basis of the controlled energy dissipation scheme, it is possible to apply an iterative process which has
shown an exceptionally high rate of convergence in numerical experiments. As it turned out, it takes only two
or three iterations to achieve the accuracy shown in Table 1.

The problem is to parallelize the Thomas algorithm at the “predictor” step of the finite difference scheme. In
order to accomplish this, the system expressed by (7) should be first “broken” at the junctions of the neighboring
processors and, then, the corresponding three-point equations of the system are replaced by the equations of
Godunov’s scheme with disappearance of discontinuities:

𝑣𝑗𝑟 =
𝑣𝑟 𝑗+1/2 + 𝑣𝑟 𝑗−1/2

2
+

𝜎𝑟 𝑗+1/2 − 𝜎𝑟 𝑗−1/2

2 𝜌 𝑐𝑝
,

where the fractional indices indicate that the velocity and stress values belong to the boundary grid cells of
neighboring processors. This procedure allows us to implement the Thomas algorithm on the processors of the
computational cluster in the parallel mode and, thus, to obtain the first approximation of the solution. After
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Figure 4. Velocity profiles behind the discontinuity front: scheme with dissipation (longitudinal waves)

that, we iteratively recalculate the velocity values at the processor junctions by the obtained approximation
using the following formula:

𝑣𝑗𝑟 =
𝐹𝑗 −𝐴𝑗 𝑣

𝑗−1
𝑟 −𝐵𝑗 𝑣

𝑗+1
𝑟

𝐶𝑗

followed by a parallel implementation of the Thomas algorithm. With such an algorithm, the achieved cal-
culation accuracy is almost completely restored for longitudinal wave equations after a single application of
the algorithm described above. In the transverse wave and torsional wave problems considered below, another
iteration is required to recover the calculation accuracy.

From the above figures it follows that the non-conservative difference scheme with the approximation of
the lowest terms by the Crank–Nicolson method gives much more reliable results for the calculation of the
discontinuous solutions in the whole range of variation of the Courant number 𝐾𝑝 6 1, where this scheme is
stable.

Note that similar schemes based on the equations in the conservative form (3) inadequately distort the
picture of wave reflection from the symmetry axis even in the case of smooth solutions, which eventually results
in the complete loss of accuracy.

The results of the studies discussed in this section are published in a short form in the authors’ English-
language paper [36].

4. Transverse cylindrical waves. In the axially symmetric case, the one-dimensional motions with
transverse waves are described by the equations

𝜌 𝑟
𝜕𝑣𝑧
𝜕𝑡

=
𝜕(𝑟 𝜎𝑟𝑧)

𝜕𝑟
,

1

𝜇

𝜕𝜎𝑟𝑧

𝜕𝑡
=

𝜕𝑣𝑧
𝜕𝑟

. (8)

The following energy balance equation follows from (8):

𝜕

𝜕𝑡

(︂
𝜌 𝑟

𝑣2𝑧
2

+ 𝑟
𝜎2
𝑟𝑧

2𝜇

)︂
=

𝜕(𝑟 𝑣𝑧 𝜎𝑟𝑧)

𝜕𝑟
.
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When constructing a finite difference scheme with controlled energy dissipation, equations (8) are approximated
by the following equations of the “corrector” step:

𝜌 𝑟0
𝑣𝑧 − 𝑣𝑧

𝜏
=

𝑟+𝜎+
𝑟𝑧 − 𝑟−𝜎−

𝑟𝑧

ℎ
,

𝜎̂𝑟𝑧 − 𝜎𝑟𝑧

𝜇 𝜏
=

𝑣+𝑧 − 𝑣−𝑧
ℎ

. (9)

The discrete energy balance equation takes the following form:

𝜌 𝑟0
𝑣2𝑧 − 𝑣2𝑧

2 𝜏
+ 𝑟0

𝜎̂2
𝑟𝑧 − 𝜎2

𝑟𝑧

2𝜇 𝜏
=

𝑟+𝑣+𝑧 𝜎
+
𝑟𝑧 − 𝑟−𝑣−𝑧 𝜎

−
𝑟𝑧

ℎ
−𝐷 ,

𝐷 =
𝑟+𝜎+

𝑟𝑧 − 𝑟−𝜎−
𝑟𝑧

ℎ

(︂
𝑣+𝑧 + 𝑣−𝑧

2
− 𝑣𝑧 + 𝑣𝑧

2

)︂
+

𝑣+𝑧 − 𝑣−𝑧
ℎ

(︂
𝑟+𝜎+

𝑟𝑧 + 𝑟−𝜎−
𝑟𝑧

2
− 𝑟0

𝜎̂𝑟𝑧 + 𝜎𝑟𝑧

2

)︂
.

The scheme’s artificial energy dissipation component is specified as the positive definite quadratic form 𝐷 =

𝛾 (𝑣+𝑧 − 𝑣−𝑧 )2/ℎ2 due to the closing equations of the “predictor” step:

𝑣𝑧 + 𝑣𝑧
2

=
𝑣+𝑧 + 𝑣−𝑧

2
, 𝑟0

𝜎̂𝑟𝑧 + 𝜎𝑟𝑧

2
=

𝑟+𝜎+
𝑟𝑧 + 𝑟−𝜎−

𝑟𝑧

2
− 𝛾

𝑣+𝑧 − 𝑣−𝑧
ℎ

(10)

(𝛾 is a non-negative parameter of the scheme dissipation).
After eliminating the values 𝑣𝑧 and 𝜎̂𝑟𝑧 expressed from (9), equations (10) are transformed to the following

system:

𝑣+𝑧 + 𝑣−𝑧
2

− 𝜏

2 𝜌 𝑟0
𝑟+𝜎+

𝑟𝑧 − 𝑟−𝜎−
𝑟𝑧

ℎ
= 𝑣𝑧 ,

𝑟+𝜎+
𝑟𝑧 + 𝑟−𝜎−

𝑟𝑧

2
−
(︂
𝛾 +

𝜇 𝜏 𝑟0

2

)︂
𝑣+𝑧 − 𝑣−𝑧

ℎ
= 𝑟0 𝜎𝑟𝑧 .

This system can be represented as

𝑟+𝜎+
𝑟𝑧 − 𝑟−𝜎−

𝑟𝑧 = 𝑎𝑗−1/2 𝑣
+
𝑧 + 𝑏𝑗−1/2 𝑣

−
𝑧 + 𝑓𝑗−1/2 , 𝑟+𝜎+

𝑟𝑧 + 𝑟−𝜎−
𝑟𝑧 = 𝑐𝑗−1/2 𝑣

+
𝑧 + 𝑑𝑗−1/2 𝑣

−
𝑧 + 𝑔𝑗−1/2

with the following coefficients:

𝑎𝑗−1/2 =
𝜌 ℎ 𝑟0

𝜏
, 𝑏𝑗−1/2 = 𝑎𝑗−1/2 , 𝑓𝑗−1/2 = − 2 𝑎𝑗−1/2 𝑣𝑧 ,

𝑐𝑗−1/2 = 𝜇
𝜏 𝑟0

ℎ
+

2 𝛾

ℎ
, 𝑑𝑗−1/2 = − 𝑐𝑗−1/2 , 𝑔𝑗−1/2 = 2 𝑟0𝜎𝑟𝑧 .

In these notations, the system of equations expressed by (6) is accurate up to the replacement of radial stress
𝜎𝑟 by the shear stress 𝜎𝑟𝑧. A boundary condition is added to this system on the symmetry axis:(︀

𝑐1/2 − 𝑎1/2
)︀
𝑣1𝑧 +

(︀
𝑑1/2 − 𝑏1/2

)︀
𝑣0𝑧 = 𝑓1/2 − 𝑔1/2 ,

which corresponds to the condition 𝜎0
𝑟𝑧 = 0 for 𝑟 = 0. The following boundary condition is also added at 𝑟 = 𝑅

for the velocity 𝑣𝑛𝑧 = 𝑣 or for the shear stress:(︀
𝑎𝑛−1/2 + 𝑐𝑛−1/2

)︀
𝑣𝑛𝑧 +

(︀
𝑏𝑛−1/2 + 𝑑𝑛−1/2

)︀
𝑣𝑛−1
𝑧 = 2𝑅𝜎 − 𝑓𝑛−1/2 − 𝑔𝑛−1/2 .

With these boundary conditions, the resulting system of equations is solved by the Thomas algorithm; the
corresponding algorithm for recalculating the solution per a single time step is the same as the algorithm used
in the problem on longitudinal cylindrical waves.

In order to compare the accuracy of the numerical solution, we consider once again the three grid-
characteristic schemes based on the equivalent representation of the system expressed by (8) in the form

𝜌
𝜕𝑣𝑧
𝜕𝑡

=
𝜕𝜎𝑟𝑧

𝜕𝑟
+

𝜎𝑟𝑧

𝑟
,

1

𝜇

𝜕𝜎𝑟𝑧

𝜕𝑡
=

𝜕𝑣𝑧
𝜕𝑟

and on the approximation of these equations by the Godunov method with disappearance of discontinuities.
Numerical experiments show that the “predictor–corrector” scheme with the explicit approximation of the

lowest terms

𝜌
𝑣𝑧 − 𝑣𝑧

𝜏
=

𝜎+
𝑟𝑧 − 𝜎−

𝑟𝑧

ℎ
+

𝜎𝑟𝑧

𝑟0
,

𝜎̂𝑟𝑧 − 𝜎𝑟𝑧

𝜇 𝜏
=

𝑣+𝑧 − 𝑣−𝑧
ℎ

,

𝑣+𝑧 − 𝜎+
𝑟𝑧

𝜌𝑐𝑠
= 𝑣𝑧 −

𝜎𝑟𝑧

𝜌𝑐𝑠
, 𝑣−𝑧 +

𝜎−
𝑟𝑧

𝜌 𝑐𝑠
= 𝑣𝑧 +

𝜎𝑟𝑧

𝜌 𝑐𝑠

(11)
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is stable if the Courant–Friedrichs–Lewy stability condition is fulfilled: 𝐾𝑠 ≡ 𝑐𝑠 𝜏/ℎ 6 1; however, this sheme is
not monotonic for the maximum allowed time step 𝜏 = ℎ/𝑐𝑠 (parasitic oscillations appear near the symmetry
axis). If the time step is small, then the numerical viscosity leads to the situation when the solution becomes
oversmoothed.

The scheme with implicit approximation of the lowest terms can be obtained by replacing the first equation
of (11) by the equation

𝜌
𝑣𝑧 − 𝑣𝑧

𝜏
=

𝜎+
𝑟𝑧 − 𝜎−

𝑟𝑧

ℎ
+

𝜎̂𝑟𝑧

𝑟0
.

This scheme is stable over the entire range 0 < 𝐾𝑠 6 1 and also shows the smoothing property when calculating
discontinuous solutions for small values of 𝐾𝑠.

Now we consider the scheme with implicit approximation of the lowest terms by the Crank–Nicolson
method when its first equation takes the form

𝜌
𝑣𝑧 − 𝑣𝑧

𝜏
=

𝜎+
𝑟𝑧 − 𝜎−

𝑟𝑧

ℎ
+

𝜎̂𝑟𝑧 + 𝜎𝑟𝑧

2 𝑟0
.

This scheme is stable over the whole range 0 < 𝐾𝑠 6 1 and is more accurate when reproducing the near-
discontinuity front states compared to the explicit and implicit approximation schemes.

Our comparison of the numerical results for these schemes with those obtained by the controlled en-
ergy dissipation scheme leads us to the same qualitative conclusions as in the case of longitudinal cylindrical
waves. It was found that the non-conservative difference scheme with approximation of the lowest terms by the
Crank–Nicolson method has advantages in the calculation of discontinuities, but is much less accurate than the
nondissipative scheme in the case of smooth solutions.

Now we consider the following exact solution of the problem on one-dimensional motion of a cylindrical
transverse wave:

𝑣𝑧 =
𝜎0

𝜌 𝑐𝑠
cos𝜔𝑡

(︂
𝐽2(𝜉𝑠) −

2

𝜉𝑠
𝐽1(𝜉𝑠)

)︂
, 𝜎𝑟𝑧 = 𝜎0 sin𝜔𝑡 𝐽1(𝜉𝑠)

(︂
𝜉𝑠 =

𝜔 𝑟

𝑐𝑠

)︂
.

This solution was used to analyze the calculation error. The dimensionless velocity profiles for this solution are
shown in Fig. 5 at a fixed time instant for different frequencies.

Tables 5–8 present the errors of the numerical solution. Their analysis show that the use of the Crank–
Nicolson approximation scheme (the best one among the explicit schemes being considered) to obtain reliable
results requires choosing a finite difference grid in such a way that each half-wave would contain at least 60–70
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Figure 5. Transverse velocity diagrams for different frequencies
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Table 5

Relative errors for the nondissipative scheme: 𝛾 = 0 (transverse waves)
H
HHH𝐾𝑠

𝜔̄ 10 20 30 40 50

0.5 0.00225 0.01931 0.05280 0.101125 0.24425
0.75 0.00097 0.00975 0.02758 0.05381 0.13792
1 0.00097 0.00385 0.00867 0.01589 0.02498

1.25 0.00330 0.02081 0.05215 0.10075 0.24307
1.5 0.00615 0.04155 0.10506 0.20785 0.53001

Table 6

Relative errors for the scheme with explicit approximation of the lowest terms (transverse waves)
H
HHH𝐾𝑠

𝜔̄ 10 20 30 40 50

0.5 0.16838 0.51326 0.64188 0.72456 0.86577
0.75 0.05807 0.24316 0.37495 0.50673 0.74317
1 0.06842 0.19771 0.35433 0.45500 0.46565

Table 7

Relative errors for the scheme with implicit approximation of the lowest terms (transverse waves)
HH

HH𝐾𝑠

𝜔̄ 10 20 30 40 50

0.5 0.19499 0.55547 0.67563 0.73462 0.86316
0.75 0.10331 0.33726 0.47610 0.55343 0.73860
1 0.00956 0.01371 0.01687 0.01968 0.02223

Table 8

Relative errors for the scheme with Crank–Nicolson approximation (transverse waves)
H
HHH𝐾𝑠

𝜔̄ 10 20 30 40 50

0.5 0.18180 0.53469 0.65886 0.72938 0.86436
0.75 0.08090 0.29110 0.42511 0.52797 0.73944
0.97 0.02361 0.04792 0.08386 0.14222 0.21822
1 0.03341 0.09611 0.16719 0.21048 0.21554

grid cells. The nondissipative scheme produces reliable results regardless of the number of half-waves if 𝐾𝑠 6 1,
but its accuracy decreases as the number of half-waves increases when 𝐾𝑠 > 1.

Figures 6–8 illustrate the characteristic velocity distributions behind the jump-like front moving in the
direction of the symmetry axis and reflecting from the axis. These distributions are obtained according to
the scheme with the Crank–Nicolson approximation, by the nondissipative finite difference scheme and by the
scheme with a controlled dissipation (for 𝛾 = 0.0005).

5. Torsional waves. One-dimensional torsional waves are described by the following system of equations:

𝜌 𝑟
𝜕𝑣𝜙
𝜕𝑡

=
𝜕(𝑟 𝜎𝑟𝜙)

𝜕𝑟
+ 𝜎𝑟𝜙 ,

1

𝜇

𝜕𝜎𝑟𝜙

𝜕𝑡
=

𝜕𝑣𝜙
𝜕𝑟

− 𝑣𝜙
𝑟

. (12)

The energy balance equation for this system takes the form

𝜕

𝜕𝑡

(︂
𝜌 𝑟

𝑣2𝜙
2

+ 𝑟
𝜎2
𝑟𝜙

2𝜇

)︂
=

𝜕(𝑟 𝑣𝜙 𝜎𝑟𝜙)

𝜕𝑟
. (13)
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Figure 6. Velocity profiles behind the discontinuity front:
Crank–Nicolson approximation scheme (transverse waves)

Figure 7. Velocity profiles behind the discontinuity front: nondissipative scheme (transverse waves)



NUMERICAL METHODS AND PROGRAMMING. 2021 . Vol. 22 59

Figure 8. Velocity profiles behind the discontinuity front: a scheme with dissipation (transverse waves)

The discrete analogs of equations (12) and (13) in a cell can be written as

𝜌 𝑟0
𝑣𝜙 − 𝑣𝜙

𝜏
=

𝑟+𝜎+
𝑟𝜙 − 𝑟−𝜎−

𝑟𝜙

ℎ
+ 𝜎0

𝑟𝜙 ,
𝜎̂𝑟𝜙 − 𝜎𝑟𝜙

𝜇 𝜏
=

𝑣+𝜙 − 𝑣−𝜙
ℎ

−
𝑣0𝜙
𝑟0

,

𝜌 𝑟0
𝑣2𝜙 − 𝑣2𝜙

2𝜏
+ 𝑟0

𝜎̂2
𝑟𝜙 − 𝜎2

𝑟𝜙

2𝜇 𝜏
=

𝑟+𝑣+𝜙 𝜎
+
𝑟𝜙 − 𝑟−𝑣−𝜙 𝜎

−
𝑟𝜙

ℎ
−𝐷 ,

𝐷 =
𝑟+𝜎+

𝑟𝜙 − 𝑟−𝜎−
𝑟𝜙

ℎ

(︂
𝑣+𝜙 + 𝑣−𝜙

2
− 𝑣𝜙 + 𝑣𝜙

2

)︂
+

𝑣+𝜙 − 𝑣−𝜙
ℎ

(︂
𝑟+𝜎+

𝑟𝜙 + 𝑟−𝜎−
𝑟𝜙

2
− 𝑟0

𝜎̂𝑟𝜙 + 𝜎𝑟𝜙

2

)︂
− 𝜎0

𝑟𝜙

𝑣𝜙 + 𝑣𝜙
2

+ 𝑣0𝜙
𝜎̂𝑟𝜙 + 𝜎𝑟𝜙

2
.

The closing equations of the “predictor” step are constructed so as to ensure the positive definite quadratic form
𝐷 = 𝛾 (𝑣+𝜙 − 𝑣−𝜙 )2/ℎ2 with the dissipation parameter 𝛾 > 0. They are of the same form as equations (5) if we
replace 𝑣𝑟 by 𝑣𝜙 and 𝜎𝑟 by 𝜎𝑟𝜙. After eliminating 𝑣𝜙 and 𝜎̂𝑟𝜙, these equations take the form

𝜎0
𝑟𝜙 =

𝜇 𝜏

2

(︂
𝑣+𝜙 − 𝑣−𝜙

ℎ
−

𝑣+𝜙 + 𝑣−𝜙
2 𝑟0

)︂
+ 𝜎𝑟𝜙 ,

𝑣+𝜙 + 𝑣−𝜙
2

=
𝜏

2 𝜌 𝑟0

(︂
𝑟+𝜎+

𝑟𝜙 − 𝑟−𝜎−
𝑟𝜙

ℎ
+ 𝜎0

𝑟𝜙

)︂
+ 𝑣𝜙 ,

𝑟+𝜎+
𝑟𝜙 + 𝑟−𝜎−

𝑟𝜙

2
= 𝑟0𝜎0

𝑟𝜙 + 𝛾
𝑣+𝜙 − 𝑣−𝜙

ℎ
.

They can be reduced to the system

𝑟+𝜎+
𝑟𝜙 − 𝑟−𝜎−

𝑟𝜙 = 𝑎𝑗−1/2 𝑣
+
𝜙 + 𝑏𝑗−1/2 𝑣

−
𝜙 + 𝑓𝑗−1/2 , 𝑟+𝜎+

𝑟𝜙 + 𝑟−𝜎−
𝑟𝜙 = 𝑐𝑗−1/2 𝑣

+
𝜙 + 𝑑𝑗−1/2 𝑣

−
𝜙 + 𝑔𝑗−1/2

with the following coefficients:

𝑎𝑗−1/2 =
𝜌 ℎ 𝑟0

𝜏
− 𝜇 𝜏

2
+

𝜇 𝜏 ℎ

4 𝑟0
, 𝑏𝑗−1/2 =

𝜌 ℎ 𝑟0

𝜏
+

𝜇 𝜏

2
+

𝜇 𝜏 ℎ

4 𝑟0
, 𝑓𝑗−1/2 = − 2

𝜌 ℎ 𝑟0

𝜏
𝑣𝜙 − ℎ𝜎𝑟𝜙 ,

𝑐𝑗−1/2 =
𝜇 𝜏 𝑟0

ℎ
− 𝜇 𝜏

2
+

2 𝛾

ℎ
, 𝑑𝑗−1/2 = − 𝜇 𝜏 𝑟0

ℎ
− 𝜇 𝜏

2
− 2 𝛾

ℎ
, 𝑔𝑗−1/2 = 2 𝑟0𝜎𝑟𝜙 .
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In this notation, we again arrive at a tridiagonal system of equations expressed by (7) written with respect to
the velocity 𝑣𝜙. The condition of symmetry 𝜎𝑟𝜙 = 0 for 𝑟 = 0 and the condition for the velocity 𝑣𝜙 = 𝑣 or for
the stress 𝜎𝑟𝜙 = 𝜎 on the boundary 𝑟 = 𝑅 of the domain are added. As in the case of longitudinal or transverse
cylindrical waves, these conditions are formulated as equations to be solved together with the main system via
the Thomas algorithm.

In this case, the step-by-step computational algorithm repeats the algorithms for the schemes with con-
trolled energy dissipation, as described in the previous sections.

For comparative calculations we considered the grid-characteristic “predictor-corrector” schemes based on
the equations

𝜌
𝜕𝑣𝜙
𝜕𝑡

=
𝜕𝜎𝑟𝜙

𝜕𝑟
+

2𝜎𝑟𝜙

𝑟
,

1

𝜇

𝜕𝜎𝑟𝜙

𝜕𝑡
=

𝜕𝑣𝜙
𝜕𝑟

− 𝑣𝜙
𝑟

.

The non-conservative scheme

𝜌
𝑣𝜙 − 𝑣𝜙

𝜏
=

𝜎+
𝑟𝜙 − 𝜎−

𝑟𝜙

ℎ
+

2𝜎𝑟𝜙

𝑟0
,

𝜎̂𝑟𝜙 − 𝜎𝑟𝜙

𝜇 𝜏
=

𝑣+𝜙 − 𝑣−𝜙
ℎ

− 𝑣𝜙
𝑟0

,

𝑣+𝜙 −
𝜎+
𝑟𝜙

𝜌 𝑐𝑠
= 𝑣𝜙 − 𝜎𝑟𝜙

𝜌 𝑐𝑠
, 𝑣−𝜙 +

𝜎−
𝑟𝜙

𝜌 𝑐𝑠
= 𝑣𝜙 +

𝜎𝑟𝜙

𝜌 𝑐𝑠

with explicit approximation of the lowest terms produces strong oscillations of the solution. These oscillations
increase with time (the scheme is unstable) for 𝐾𝑠 = 0.5 and higher; therefore, it is not reasonable to use it in
practice.

The scheme with implicit approximation of the lowest terms obtained by replacing the shear stress 𝜎𝑟𝜙 and
the velocity 𝑣𝜙 by 𝜎̂𝑟𝜙 and 𝑣𝜙 and the scheme with approximation of the lowest terms by the Crank–Nicolson
method are stable for all 𝐾𝑠 6 1.

The relative calculation errors are found by the norm 𝐿∞(0, 𝑇 ;𝐿2(0, 𝑅)) when comparing with the exact
solution

𝑣𝜙 =
𝜎0

𝜌 𝑐𝑠
cos𝜔𝑡

(︂
𝐽3(𝜉𝑠) −

4

𝜉𝑠
𝐽2(𝜉𝑠)

)︂
, 𝜎𝑟𝜙 = 𝜎0 sin𝜔𝑡 𝐽2(𝜉𝑠)

(︂
𝜉𝑠 =

𝜔 𝑟

𝑐𝑠

)︂
to equations (12) for a monochromatic wave with frequency 𝜔. The velocity diagrams for this solution are
shown in Fig. 9. Tables 9–11 show the calculation errors for the schemes being considered.

Table 9

Relative errors for the nondissipative scheme: 𝛾 = 0 (torsional waves)
HH

HH𝐾𝑠

𝜔̄ 10 20 30 40 50

0.5 0.00115 0.01481 0.06891 0.18515 0.33317
0.75 0.00045 0.00743 0.03702 0.10161 0.18224
1 0.00070 0.00336 0.00819 0.01496 0.02288

1.25 0.00201 0.01667 0.06618 0.16396 0.27024
1.5 0.00364 0.03322 0.13758 0.34264 0.54504

Table 10

Relative errors for the scheme with implicit approximation of the lowest terms (torsional waves)
HHHH𝐾𝑠

𝜔̄ 10 20 30 40 50

0.5 0.12927 0.45187 0.81556 0.98173 0.95374
0.75 0.10712 0.33935 0.66174 0.89290 0.90189
1 0.08698 0.18696 0.28001 0.37036 0.43553

The characteristic velocity profiles obtained in our calculations according to the scheme with Crank–
Nicolson approximation are illustrated in Fig. 10 and according to the nondissipative scheme are illustrated in
Fig. 11. Numerical experiments show that the smoothing of the solution by introducing an artificial dissipation
is not required in the case of torsional waves.
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Table 11

Relative errors for the scheme with Crank–Nicolson approximation (torsional waves)
H
HHH𝐾𝑠

𝜔̄ 10 20 30 40 50

0.5 0.10058 0.42198 0.80260 0.97716 0.95002
0.75 0.05841 0.27131 0.60356 0.84952 0.86860
1 0.02108 0.05058 0.07070 0.09783 0.13319
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Figure 9. Torsional velocity diagrams for different frequencies

6. Conclusion. Our comparison of the numerical results obtained by the finite difference scheme with
controlled energy dissipation with similar results obtained by the typical grid-characteristic “predictor–corrector”
schemes shows that the controlled dissipation scheme has a number of advantages in accuracy over other schemes
in the case of smooth solutions. The grid-characteristic schemes are preferable for calculating discontinuous
solutions due to their monotonicity. The parasitic oscillations during the calculation of discontinuities by the
controlled energy dissipation scheme can be smoothed by choosing an adequate artificial dissipation parameter.
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Figure 10. Velocity profiles behind the discontinuity front:
Crank–Nicolson approximation scheme (torsional waves)

Figure 11. Velocity profiles behind the discontinuity front: nondissipative scheme (torsional waves)
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