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Abstract: This paper is concerned with implementation of wave tomography algorithms on modern
SIMD CPU and GPU computing platforms. The field of wave tomography, which is currently under
development, requires powerful computing resources. Main applications of wave tomography are
medical imaging, nondestructive testing, seismic studies. Practical applications depend on comput-
ing hardware. Tomographic image reconstruction via wave tomography technique involves solving
coefficient inverse problems for the wave equation. Such problems can be solved using iterative
gradient-based methods, which rely on repeated numerical simulation of wave propagation process.
In this study, finite-difference time-domain (FDTD) method is employed for wave simulation. This
paper discusses software implementation of the algorithms and compares the performance of various
computing devices: multi-core Intel and ARM-based CPUs, NVidia graphics processors.
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1. Introduction. Wave tomography technology aims to determine the internal structure of the object
using the wave field scattered by the object and recorded by detectors. Tomographic imaging methods using wave
sources are currently being developed in Russia, USA and Europe. Primary applications of wave tomography are
medical ultrasound tomography, nondestructive testing, electromagnetic sounding [1–4]. Physical experiments
on tomographic nondestructive testing [5] and medical ultrasound tomography [6–8] are being conducted by the
authors.

Unlike X-ray tomography, inverse problems of wave tomography are nonlinear ill-posed problems with large
number of unknowns [9, 10]. Breakthrough results in the field of solving inverse problems of wave tomography
in scalar wave models were obtained in [1, 11, 12]. In these works, representations for the gradient of the
residual functional, have been obtained for various formulations of the inverse problem. These results open up
the possibilities for employing gradient iterative methods for solving inverse problem of wave tomography [13].
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The residual functional is the difference between the measured and computed wave fields; thus, gradient-
based methods rely on numerical simulations of wave propagation process [6–8] performed repeatedly to obtain
successive approximations of the exact solution. Computing capabilities of the hardware are of great importance
for practical implementation of wave tomography methods.

A scalar wave model is used for numerical simulations in this study. This model accounts for such physical
phenomena as diffraction, refraction and multiple scattering. The better the wave model approximates real
physical processes, the better approximate solution can be obtained. Scalar wave model accounts for waves
propagating in all directions, unlike commonly used Born and Rytov approximations that are valid only for a
narrow angular range [14].

The wave tomography algorithms have been implemented in open-source software published by the authors.
The performance of various CPU and GPU devices on a range of typical model problems of wave tomography was
assessed. ARM-based processors are being increasingly used at present time in server and HPC applications,
and in many cases ARM CPUs demonstrate better energy efficiency and cost efficiency comparing to Intel-
architecture CPUs [15]. One of the aims of this study is to evaluate the performance of ARM-based Kunpeng-
920 CPUs manufactured by Huawei Technologies in solving inverse problems of wave tomography. The CPU
computing platforms tested were Intel Haswell-EP E5-2697v3, 2.6 GHz, 14 cores, Intel 6240R dual-CPU server,
2.4 GHz, 24 cores per CPU, and TaiShan 5280 dual-CPU server equipped with ARM-based Kunpeng-920 CPUs,
2.4 GHz, 48 cores per CPU. The GPU platforms tested were NVidia Tesla P100 and NVidia Tesla V100. The
computations were carried out on “Lomonosov-2” supercomputer at the Lomonosov Moscow State University [16]
and the hardware provided by Huawei Technologies Co., Ltd.

2. Formulation of the inverse problem of wave tomography and its solution method. The
basic scheme of a tomographic examination is shown in Figure 1a. The object being imaged occupies region G.
In medical imaging, region L is filled with water with known 𝑐0 = const. The detectors are located on circle Γ.
The objective is to reconstruct the speed of sound in region G using the ultrasonic waves radiated from the
emitters, scattered by the object and registered by the detectors.

Figure 1b shows the scheme of the layer-by-layer 3D wave tomography. Emitters and detectors are located
in a horizontal plane and can shift relative to the object in vertical direction. The images are acquired in multiple
horizontal imaging planes. A 3D image of an object is represented in the form of a stack of 2D cross-sections
in this formulation.

The inverse problem of wave tomography is posed as a coefficient inverse problem. The unknowns are
the speed of sound and the absorption factor at each point of the object. A scalar wave model based on a
second-order hyperbolic differential equation (1) is used for numerical simulation of wave propagation process.
This model accounts for diffraction, refraction, multiple scattering and absorption of ultrasound waves:

𝑐(𝑟)𝑢𝑡𝑡(𝑟, 𝑡) + 𝑎(𝑟)𝑢𝑡(𝑟, 𝑡)−∆𝑢(𝑟, 𝑡) = 0; (1)

𝑢(𝑟, 𝑡)
⃒⃒
𝑡=0

= 𝐹0(𝑟), 𝑢𝑡(𝑟, 𝑡)
⃒⃒
𝑡=0

= 𝐹1(𝑟). (2)

Here, 𝑢(𝑟, 𝑡) is the acoustic pressure; 𝑐(𝑟) = 1/𝑣2(𝑟), where 𝑣(𝑟) is the speed of sound; 𝑎(𝑟) is the
absorption factor; 𝑟 = {𝑥, 𝑦} is a point in the imaging plane, and ∆ is the Laplacian operator with respect to 𝑟.
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Figure 1. Scheme of tomographic examination (a), layer-by-layer 3D tomography (b)
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Initial conditions (2) represent the wavefield at the initial time of the simulation. Approximate non-reflecting
boundary conditions [17] are applied at the boundary 𝑆 of the computational domain:

𝜕𝑛𝑢
⃒⃒
𝑆𝑇

= −𝑐−0.5𝜕𝑡𝑢
⃒⃒
𝑆𝑇

.

The inverse problem of wave tomography is an ill-posed coefficient inverse problem for the wave equa-
tion (1). The objective is to determine the speed of sound 𝑐(𝑟) and absorption factor 𝑎(𝑟) inside the medium,
while the wavefield 𝑢(𝑟, 𝑡) is known only at the detector positions. An approximate solution to the inverse
problem can be obtained via minimizing the residual functional

Φ(𝑢(𝑐, 𝑎)) =
1

2

𝑇∫︁
0

∫︁
Γ

(𝑢(𝑠, 𝑡)− 𝑈(𝑠, 𝑡))2 𝑑𝑠 𝑑𝑡 (3)

for its argument (𝑐, 𝑎). Here 𝑈(𝑠, 𝑡) are the data measured at surface Γ for the time period (0, 𝑇 ), 𝑢(𝑠, 𝑡) is the
solution of the direct problem (1)–(2) for given 𝑐(𝑟) = 1/𝑣2(𝑟) and 𝑎(𝑟). The residual functional is the sum of
the residuals (3) obtained for each ultrasound emitter.

The gradient Φ′(𝑢(𝑐, 𝑎)) = {Φ′
𝑐(𝑢),Φ

′
𝑎(𝑢)} of the functional (3) with respect to the variation of the sound

speed and absorption factor {𝑑𝑐, 𝑑𝑎} has the form:

Φ′
𝑐(𝑢(𝑐)) =

𝑇∫︁
0

𝑤𝑡(𝑟, 𝑡)𝑢𝑡(𝑟, 𝑡) 𝑑𝑡, Φ′
𝑎(𝑢(𝑎)) =

𝑇∫︁
0

𝑤𝑡(𝑟, 𝑡)𝑢(𝑟, 𝑡) 𝑑𝑡. (4)

Here 𝑢(𝑟, 𝑡) is the solution of the direct problem (1) – (2), and 𝑤(𝑟, 𝑡) is the solution of the “conjugate” problem
with the given 𝑐(𝑟), 𝑎(𝑟), and 𝑢(𝑟, 𝑡):

𝑐(𝑟)𝑤𝑡𝑡(𝑟, 𝑡)− 𝑎(𝑟)𝑤𝑡(𝑟, 𝑡)−∆𝑤(𝑟, 𝑡) = 𝐸(𝑟, 𝑡); (5)

𝑤(𝑟, 𝑡 = 𝑇 ) = 0, 𝑤𝑡(𝑟, 𝑡 = 𝑇 ) = 0; (6)

𝐸(𝑟, 𝑡) =

{︂
𝑢(𝑟, 𝑡)− 𝑈(𝑟, 𝑡), where 𝑟 ∈ Γ and 𝑈(𝑟, 𝑡) is known;
0, otherwise.

(7)

In order to solve the inverse problem of wave tomography, a direct problem is solved to obtain the
boundary values and the simulated wavefield 𝑢(𝑠, 𝑡) at the detectors, given the current approximate values of
the coefficients 𝑐(𝑟) and 𝑎(𝑟). The direct problem is solved for each ultrasound emitter at each iteration of the
gradient descent method.

3. Numerical method. Finite-difference time-domain method (FDTD) is employed to solve equa-
tions (1) – (2). We define a uniform rectangular finite difference grid: 𝑥𝑖 = 𝑖ℎ, 𝑦𝑗 = 𝑗ℎ, 𝑡𝑘 = 𝑘𝜏 ; 𝑖, 𝑗 = 1, . . . , 𝑁,

𝑘 = 1, . . . ,𝑀 , where ℎ is the spatial discretization step, and 𝜏 is the time step. A second-order finite difference
scheme approximates equation (1):

𝑐𝑖𝑗
𝑢𝑘+1
𝑖𝑗 − 2𝑢𝑘

𝑖𝑗 + 𝑢𝑘−1
𝑖𝑗

𝜏2
+ 𝑎𝑖𝑗

𝑢𝑘+1
𝑖𝑗 − 𝑢𝑘−1

𝑖𝑗

2𝜏
−

𝐿𝑘
𝑖𝑗

ℎ2
= 0. (8)

Here, 𝑢𝑘
𝑖𝑗 = 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑡𝑘) are the values of 𝑢(𝑟, 𝑡) at point (𝑖, 𝑗) at the time step 𝑘; 𝑐𝑖𝑗 and 𝑎𝑖𝑗 are the values of 𝑐(𝑟)

and 𝑎(𝑟) at point (𝑖, 𝑗). The first term approximates 𝑐(𝑟)𝑢𝑡𝑡(𝑟, 𝑡), the second term approximates 𝑎(𝑟)𝑢𝑡(𝑟, 𝑡).
The discrete Laplacian is denoted by 𝐿𝑘

𝑖𝑗 . A fourth-order numerical approximation [18] on a 5×5-point stencil
is used for the discrete Laplacian:

𝐿𝑘
𝑖𝑗 =

𝑖+2∑︁
𝑖0=𝑖−2

𝑗+2∑︁
𝑗0=𝑗−2

𝑣𝑖0𝑗0𝑢
𝑘
𝑖0𝑗0 .

Collecting the terms with 𝑢𝑘+1
𝑖𝑗 in (8), we obtain an explicit finite-difference scheme for the wave equation (1):

𝑢𝑘+1
𝑖𝑗 =

(︃
2
𝑐𝑖𝑗
𝜏2

𝑢𝑘
𝑖𝑗 +

𝐿𝑘
𝑖𝑗

ℎ2
+
(︁𝑎𝑖𝑗
2𝜏

− 𝑐𝑖𝑗
𝜏2

)︁
𝑢𝑘−1
𝑖𝑗

)︃(︁𝑎𝑖𝑗
2𝜏

+
𝑐𝑖𝑗
𝜏2

)︁−1

.
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This scheme allows us to compute the wavefield 𝑢(𝑟, 𝑡) sequentially in time, starting witn initial conditions (2).
The parameters ℎ and 𝜏 are related by the Courant stability condition 𝑐−0.5𝜏 < ℎ/

√
2. For the problem

considered, we used a time step equal to 𝜏 = 0.3 𝑐0.50 ℎ, which ensured the stability of the finite difference
method. Since ℎ and 𝜏 are proportional, the total number of operations in a numerical simulation of wave
propagation is proportional to 𝑂(𝑁3), where 𝑁 is the number of grid points along spatial dimensions. The
number of points 𝑁 is chosen so that the wave simulation is precise enough for a selected wavelength range.
Thus, computing power requirements rise as a third power of wave frequency and spatial image resolution.

An approximate solution to the inverse problem can be obtained via an iterative gradient descent method.
The gradient of the residual functional is computed, and the current approximation of coefficients 𝑐(𝑟) and 𝑎(𝑟) is
updated: {𝑐(𝑛+1), 𝑎(𝑛+1)} = {𝑐(𝑛), 𝑎(𝑛)}−𝛼 · {Φ′

𝑐(𝑢),Φ
′
𝑎(𝑢)}, where 𝑛 is the iteration number. The process stops

when the residual functional reaches the level determined by measurement errors and numerical simulation
errors and does not decrease anymore. Each iteration involves solving direct (1)–(2) and conjugate (5)–(7)
problems, which require simulating the wave propagation process in forward and reverse time.

The gradient descent method involves computing successive approximations of unknown coefficients over
many iterations. Wave propagation and back-propagation simulations must be performed at each iteration for
every ultrasound emitter, and the approximate solutions found for every cross-section of the object, resulting
in tens of thousands of wave simulations in total. This makes the method very computationally expensive.

4. Software implementation. Open-source “WaveTomography” software package developed for this
study implements the algorithms for solving direct and inverse problems of wave tomography for Intel x86-64,
ARM and GPU computing platforms. This software can be used in research and educational projects on wave
tomography, computational diagnostics, numerical simulation and supercomputer technology. The software is
implemented in C++ using open-source “vectorclass” library for Intel-compatible processors and OpenCL inter-
face for GPU computing. ARM version of the numerical algorithm uses intrinsics and GCC vector extensions
so that the code translates directly to SIMD instructions.

Figure 2 illustrates the direct problem solution algorithm. The wave field is simulated using a predefined
numerical phantom that specifies the parameters 𝑐(𝑟) and 𝑎(𝑟) in a single imaging plane. The software can
automatically generate randomized test phantoms for demonstration purposes. Automatic routines ensure that
the generated model problems are solvable. Emitters and detectors are placed in a circular formation around
the phantom (Fig. 1a). The wavefield is simulated starting from the initial pulse that is computed analytically
as a wave radiating from the emitter position. The base wavelength, bandwidth and beam width of the initial
pulse are determined by the simulation parameters. The wave field at the detectors for each emitter is recorded
in the output dataset.

Figure 3 illustrates the inverse problem solution algorithm. An approximate solution to the inverse problem
of wave tomography is computed via the iterative gradient descent method using the previously computed
simulated dataset as input. A constant initial approximation of the coefficients is assumed at the beginning
of the iterative process. The direct problem is solved for the current approximation. The boundary values of
𝑢(𝑟, 𝑡) wavefield are stored in the memory buffer in order to reverse the wave propagation direction of 𝑢(𝑟, 𝑡) in
formula (4). Then, 𝑤(𝑟, 𝑡) wave is computed from 𝑢(𝑟, 𝑡) and the input dataset, and the gradient is computed
using formula (4). The approximate solution is updated according to the gradient and the process is repeated.
At the end of the process, the approximate solution is the output of the inverse problem solution algorithm.

Input
c( ), a( )r r

Initial
pulse

generation

Emitters and detectors
placement

Waves recorded by detectors

Wave
simulation

Simulated
dataset
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Figure 2. Direct problem solution algorithm
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Figure 3. Inverse problem solution algorithm

The software performs a limited number of iterations of the gradient descent method of minimizing the residual
functional and stops when the minimum is found or the limit on the number of iterations is reached.

The iterative gradient descent method allows for all the computations within a single iteration to be
executed in parallel. SIMD-parallel algorithm implementation is employed to compute the wavefield using
formula (8). The discrete Laplacian in this formula constitutes the main computational load in this numerical
method.

The flowchart of the SIMD algorithm for computing the discrete Laplacian is shown in Fig. 4. The Lapla-
cian operator is spherically symmetrical; thus, fewer operations are needed, comparing to a general convolution-
type problem.

For maximum data retention in CPU registers, Y-marching method is used to compute wave data. The
results are calculated sequentially in vertical direction, while holding the amount of data that fit in the registers
along the horizontal dimension. Using the input data vector and horizontally adjacent cells, partial sums are
computed and stored in the register matrix, which contains the data for 5 lines of the image. The result vector
is computed by multiplying the register matrix by the Laplacian coefficient vector. The algorithm advances to
the next line by shifting the lines in the register matrix up and reloading the last line from the input vector.
The data is shifted via renaming the registers, no actual operations are needed for shifting.

Modern processors (AVX, AVX-512, ARM NEON-class FPUs) typically contain 32 SIMD registers. There
are three partial sums per line and five lines in the register matrix; thus, the input vector can be two registers
long for the single wave simulation (𝑢(𝑟, 𝑡) for the direct problem) and one register long for the dual wave
simulation (𝑢(𝑟, 𝑡) and 𝑤(𝑟, 𝑡) for the conjugate problem).

The computations on multi-core CPUs are parallelized using OpenMP library. MPI interface is used for
data exchange between computing nodes (CPU sockets or GPU devices). Figure 5a,b illustrate the order of
computations for multi-core CPUs and GPUs, respectively.

×

Laplacian coefficient
vector

Partial sums

Input vector
Result vector

Shift
(rename)

Register matrix

Figure 4. SIMD discrete Laplacian computation algorithm
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Figure 5. Parallelizing the computations on multi-core processors (a) and GPU (b)

In both cases, the calculations are performed in Y-marching order. For efficient use of cache memory, the
length of the vertical segment (“Span”) of Y-marching method is limited to some value specified at run-time. On
multi-core CPUs, individual spans are computed in sequence along the horizontal dimension. An equal amount
of data is processed by each computing core (with an accuracy of ±1 span). For GPU, the computations are
performed in parallel (automatically scheduled by the GPU) within each thread block. The optimal span length
depends on image size and CPU cache and can be determined for each target system via performance tests.
The better the data fits into the CPU cache, the longer span lengths are preferred. For GPUs, thread block
size can also be adjusted for better performance.

Computation of the gradient of the residual functional is subdivided into independent sub-tasks for each
ultrasound emitter. The total number of emitters in wave tomography typically ranges from 10 to 100. The
emitters are divided evenly between the computing nodes. Partial gradients computed for each emitter are
summed up within each node, and then summed between nodes using MPI interface. Data exchanges between
nodes occur only once per iteration and therefore do not incur any noticeable delay.

5. Performance evaluation. The software was benchmarked on various SIMD CPU and GPU computing
platforms: ARM-based Kunpeng-920, Intel x86-64, Intel 6240R and Intel Haswell-EP processors, NVidia Tesla
P100 and Tesla V100 GPUs. The tests measure the output rate — the number of output (gradient) pixels
computed per second. Dividing the output rate by the total number of data points per iteration, we obtain the
overall performance as the number of gradient descent iterations per second:

IterationsPerSecond = OutputRate/ImageSize2/Emitters/TimeFrames.

For CPUs, cache utilization has a major impact on performance. In order to optimize cache memory usage,
the computations are grouped into one or more batches executed sequentially. A batch consists of the data for
one or more ultrasound emitters that are processed in parallel. Too large batch sizes cause cache misses and
frequent accesses to system RAM, decreasing the performance. With too small batch sizes, the batch execution
time becomes very short and the thread synchronization latency becomes noticeable.

Quick tests were performed to determine the optimal batch size to hold in memory for parallel processing
on each target computing system for maximum performance. The batch sizes may differ form the physical CPU
cache size due to the use of an additional memory buffer (Fig. 3). Accesses to the buffer are less frequent than
to the wave data, but they may offset the optimal dataset size from the physical CPU cache size.

The tests were performed for reconstructed image sizes of 480× 480, 640× 640 and 800× 800 pixels. Each
pixel of a reconstructed image uses 32 bytes of data. Test datasets of different sizes were created by varying the
number of ultrasound emitters from 4 to 24. Figure 6 shows the performance test results for Intel Haswell-EP,
Intel 6240R and Kunpeng-920 processors.

The optimal batch sizes were determined as 20–24 MB for Intel Haswell-EP and Intel 6240R CPUs and
50–55 MB for Kunpeng-920 processors. Intel 6240R processors feature AVX-512 vector FPU, which operates
on four times larger vectors than ARM NEON-class FPU of Kunpeng-920 does. The tests showed that the
performance of 48-core Kunpeng-920 CPU with 128-bit SIMD FPU is roughly equivalent to a 24-core Intel
6240R CPU operated with a vector size of 256-bit (AVX2-type). AVX2 mode performance is shown as a dashed
line in Fig. 6b. While Intel 6240R CPU has a substantial computing power advantage, Kunpeng-920 processor’s
performance is much more stable across the cached range (15–60 MB) than that of Intel 6240R CPU. For
very small datasets, a performance drop due to thread synchronization latency is noticeable, especially for
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Figure 6. Performance depending on data size for Intel Haswell-EP (a), Intel 6240R (b)
and Kunpeng-920 (c)

Kunpeng-920 CPUs, however, datasets that small (a low-resolution image and very few emitters) are rarely
used in practice.

In order to assess the scalability and acceleration capabilities of multi-core processors, benchmarks were
performed with different numbers of threads launched on the processors. Per-thread performance was measured.
Figure 7 shows per-thread performance rates for Intel Haswell-EP, Intel 6240R and Kunpeng-920 processors,
depending on the number of threads.

While on Intel processors a single thread can be up to 3 times faster than an average thread in a multi-
threaded environment, on Kunpeng-920 processors a single thread is only 20% faster than an average thread.
This result signifies that the threads in Kunpeng-920 CPU do not compete for any system resources, which is an
architectural advantage of this CPU and provides stable performance for varying workloads, but also this result
means that the CPU performance is limited by the computing cores: per-thread performance of Kunpeng-920
CPU is comparable to that of a much older Intel Haswell-EP CPU in a multi-threaded environment. The
difference in performance for different dataset is also negligible for Kunpeng-920 CPU and more significant for
Intel processors. On Intel 6240R processors, high volume of possibly simultaneous AVX-512 operations make
the performance very unstable for small thread count.

The software was tested on NVidia Tesla P100 and NVidia Tesla V100 graphics processors. Modern GPU
devices are well-suited or numerical simulation algorithm like the wave simulation implemented in the developed
software. The performance of GPU devices on wave simulation tasks is roughly proportional to the memory
throughput of the devices. Figure 8 shows the performance of NVidia Tesla P100 (a) and NVidia Tesla V100 (b)
on different input datasets. Average output rate of NVidia Tesla P100 amounted to 5.5 GPixel/s, which is 2.5

Threads

0 10 20

O
u
tp

u
t,
 G

P
ix

e
l/
s
 p

e
r 

th
re

a
d

0

0.05

0.1

0.15
Intel Haswell-EP

480px

640px

800px

Threads

0 5 10 15 20 25

O
u
tp

u
t,
 G

P
ix

e
l/
s
 p

e
r 

th
re

a
d

0.08

0.1

0.12

0.14

0.16

0.18
Intel 6240R

480px

640px

800px

Threads

0 10 20 30 40

O
u
tp

u
t,
 G

P
ix

e
l/
s
 p

e
r 

th
re

a
d

0.035

0.04

0.045

0.05

0.055

0.06
Kunpeng-920

480px

640px

800px

a) b) c)

Figure 7. Per-thread performance depending on the number of threads for Intel
Haswell-EP (a), Intel 6240R (b) and Kunpeng-920 (c)
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Figure 8. Performance of NVidia P100 GPU (a) and NVidia V100 GPU (b) on different
datasets

times the rate of Kunpeng-920. Average output rate of NVidia Tesla V100 amounted to 9.2 GPixel/s, which is
4.5 times the rate of Kunpeng-920.

Figure 9 shows the overall performance of the tested devices relative to Kunpeng-920. Intel 6240R showed
the best results among CPUs due to its AVX-512 FPU well-suited for computation-intensive tasks. GPU devices
consistently outperform CPUs. GPUs were found to be the preferred architecture for solving direct and inverse
problems of wave tomography. The computing tasks are data-parallel and do not require synchronized data
exchanges between computing cores or cache coherence. Thus, the algorithms can benefit from the specific
structure of graphics processors.

6. Image reconstruction results. Wave tomography image reconstruction fundamentally differs from
X-ray tomographic imaging. While in X-ray imaging the detectors record a single value, in wave tomography
the data recorded by detectors is a continuous waveform for some time period. The inverse problem of wave
tomography is nonlinear and ill-posed. The reconstructed images represent two variables — sound speed and
sound absorption factor inside the object.

The developed software is aimed to aid the research in medical imaging for breast cancer diagnosis, and
the parameters of the simulations are set accordingly. In medical imaging, soft tissues have low contrast relative
to water, but the imaging method must detect small inclusions, typically about 2 mm in size.

Figure 10 shows the numerical phantom used for the reconstructions. The phantom was generated au-
tomatically by the software. It has a diameter of 72 mm and random inclusions of varying sound speed and
absorption factor. Two dots in the center of the image are 2 mm in size. The outer environment represents
water with a speed of sound of 1.5 km·s−1 and no absorption.

Figure 11 shows the reconstruction results for low resolution: 480×480-pixel grid size, 9mm wavelength
and 10 ultrasound emitters. Although the 2 mm inclusions are much smaller than the wavelength, they are
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Figure 9. Overall performance of the computing devices
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Figure 10. Test phantom: speed of sound (a), absorption factor (b)
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Figure 11. Low-resolution reconstruction at 9 mm wavelength, 480× 480 pixels, 10
emitters: speed of sound (a), absorption factor (b)
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Figure 12. High-resolution reconstruction at 5.6 mm wavelength, 800× 800 pixels, 20
emitters: speed of sound (a), absorption factor (b)
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visible in the image. A remaining effect of the waves can be seen at the perimeter of the phantom. Sound speed
reconstruction quality (Fig. 11a) is higher than absorption factor reconstruction quality (Fig. 11b). The dataset
for this example is 40 MB in size and contains data for 1039 simulation time frames.

Figure 12 shows the reconstruction results for high resolution: 800×800-pixel grid size, 5.6mm wavelength
and 20 ultrasound emitters. The dataset for this example is 230 MB in size and contains data for 1733 simulation
time frames. Typical computing time is 2 seconds per iteration at 480-pixel resolution and 10 seconds per
iteration at 800-pixel resolution on a single Kunpeng-920 CPU. Approximately 100 iterations are needed to
reconstruct the images. The initial approximation for the iterative process is a constant equal to the acoustical
properties of water (𝑣0 = 1.5 km·s−1, 𝑎0=0).

The images demonstrate that it is possible to reconstruct tomographic images from waveform data with
high resolution and high sensitivity to changes in sound speed and absorption factor even if the wavelength is
significantly longer than the size of an inclusion.

7. Conclusion. Open-source “WaveTomography” software for solving inverse problems of wave tomog-
raphy on ARM-Based Kunpeng platform has been developed [19]. The software supports Intel x86-64, ARM
and GPU processors, effectively uses SIMD FPU features present on the target systems. GPU is supported via
industry-standard OpenCL interface.

A performance comparison of Kunpeng-920 CPUs to competing architectures was performed. Kunpeng-
920 outperforms Intel Haswell-EP by 1.8 times. However, Intel 6240R CPUs equipped with AVX-512 FPU
outperform Kunpeng-920 despite having twice less computing cores. GPU processors exhibit even higher per-
formance. FPU and memory throughput are the most important factors for wave simulation tasks.

Performance and scalability of the algorithms have been assessed. Kunpeng-920 CPUs demonstrated the
most stable performance across different datasets and the most linear scalability with respect to the number of
threads. This can be attributed to a better CPU architecture, but also to a lower computing power of individual
CPU cores.

The results showed that GPU is the preferred architecture for solving problems of wave tomography. Such
problems can be characterized by average data volumes that can exceed CPU cache capacity, but fit into the
on-board GPU RAM. Graphics processors are designed for specific data-parallel tasks with limited memory
volume, which include the problem considered.
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