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Abstract: We compare the error behavior of two methods used to find a numerical solution of the
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Awnunorarusa: Mubl cpaBHIBaeM IOBeIeHIE OMUOOK JBYX METOOB, UCIOJIB3YEMBIX JJIs HAXOXKIEHUS
YUCJIEHHOIO PEIleHNs] JIUHEHHOro mHTerpo-auddepeHnuaibHoro ypasaenuss @pearosibma co ciabo
CHHTY/IAPHBIM sIpOM B GanaxosoMm npoctpanctse Cla,b]. Mbl cTponM TIpuGIMZKeHHOe peleHne Ha
OCHOBe MOIUMUIIMPOBAHHOTO KyOMIeCKOro MeTO/a KOJIoKannu b-ciuraitnos. Pacemarpusaercs: Tak-
2Ke JIpyrasi OIeHKa TOYHOI'O PEIeHUs], IOCTPOEHHAs C IPUMEHEHNEM YHCJIEHHOI'O IIPOIECCca NHTETrPH-
POBaHUSI IO TIPOM3BEJIEHUIO U KBapaTypaM. JIBa mpeiosKeHHBIX METO/Ia IIPUBOIAT K PEIIEHUIO JIN-
HeitHoi asrebpan<eckoil cucremsl. /Jlokazana yCcTONYINBOCTD U CXOINMOCTD KyOUdecKoil b-criiaitHoBoit
KoJuTOKaruu. Mbl TecTHpyeM 3TH MeTOJbl Ha KOHKPETHOM IPUMEpPEe M CPABHUBAEM YHCJIEHHBIE pe-
3yJIbTATHI C TOYHBIM PEIIEHUEM JIJIs TOI'0 YTOOBI IIPOJIEMOHCTPUPOBATH 3D PEKTUBHOCTE U IIPOCTOTY
MOIUGPUITPOBAHHOTO METO/IA KOJIJIOKAIIHH.

KurogyeBble ciioBa: CHHIYJISIPHbIE UHTErPAJbHbIE YDABHEHUs, UHTEIPO-1uddepeHInaibHble ypaB-
HeHusl, HHTerpajbuble ypasuenus Openrompma.

Hnsi tmrupoBauusi: Taup B., Ceran C., Tw6ou X., T'mar M. JIBa 4YHCJIEHHBIX METOJA Pe-
IeHNsT JIMHeHOro wunTerpo-muddepenmanibaoro ypasuenus Ppemroabma co ci1abo CHHTYIISAD-
HBIM AapoM // BoruuciaurenbHble MeTOApl M nporpamMupoBanume. 2022. 23, Ne 2. 117-136. doi
10.26089/NumMet.v23r208.
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1. Introduction. Integro-differential equations are considered one of the most well-known mathematical
equations, which are used in many fields, for instance in physics [1, 2], biology [3], dynamics [4, 5], medicine
[6], computer science [7], etc. Their explicit form varies depending on the studied scientific task. A big number
of these equations have been investigated previously in different papers on the relevant topics. Among them,
the equations with a weakly singular kernel in the non-linear Volterra form [8-10], in the non-linear Fredholm
form [11], in the linear Fredholm form [12] or in the non-linear Volterra-Fredholm form [13] play a prominent
role. For example, they are extensively applied in the network studies [14, 15], in COVID-19 researches [16] and
others.

Because of the great number of forms of these equations, the study of the analytical solution is difficult
and generally impossible. However, nowadays the various numerical methods and techniques are known to find
good approximations of their solutions, namely the domain decomposition method [1], the degenerate kernel
[12], the product trapezoidal rule [8, 9, 11, 13, 17], the meshless local discrete collocation technique [18], the
projection method [19] and the Fourier series [20].

In this manuscript we construct two different methods to search for an approximate solution of the linear
integro-differential Fredholm equation with a weakly singular kernel, which we have already studied in the
continuous case [21, 22]. This time, we put the singularity in the derivative part, such that the equation has
the following form:

b b
Vo € [a,b] :  Au(z) = /Kl(x,t)u(t)dt+ /p(|x — ) Ka(z, t)u' (t)dt + f(z), (1)

a

where f(x) is a given term defined in C'[a,b] and ) is a real or complex parameter, which depends on physical
quantities in practice.

In the first approach we construct a solution of Eq.(1) based on the b-spline collocation method [23-26].
We consider the error of this approximate method using the convergence of projection operator. In the second
one, we apply the product integration method to transform our equations in a linear system containing 4 blocks.
The convergence of the approximate solution is ensured by constructing a sufficient condition. At the end, we
provide for the numerical examples to illustrate the difference between these two methods.

2. Preliminary. For a better understanding of the content of this manuscript by readers, we will start
this section by introducing some functional basics and spaces.

Definition 1. C°[a,b] is the Banach space of continuous functions g(z) defined on [a,b] to R, with the
following norm ||.|| s
0 ) —
Ve Clob): gl = max, lota)l.
Definition 2. C[a,b] is the Banach space of continuously differentiable functions g(z), determined as

C'la,b] := {g: [a,b] — R, g,d € Co[a,b]},

with the following norm
VgeCla,bl s lglloras = llgllos + 19 o

Definition 3. The Banach space L*(a,b) consists of equivalences classes of measurable functions g: [a,b] —
R, such that

b
lgllzap) = / lg(z)| dx < oo.
Definition 4. The Sobolev space W't (a,b) is defined by
Wht(a,b) == {g € L'(a,b), ¢ € Ll(a,b)},

where g' is a weak derivative of g and W'(a,b) is a Banach space with the norm

lgllw(a,p) = ||9||L1[a,b] + ||9/|‘L1[a,b} :
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Definition 5. Let X be the Banach space. The space BL(X) is the Banach space of linear operators
defined in X into itself which equipped with the following norm

VM € BL(X), |M|= sup [Mo]x.

llvllx <1

For more details about the above mentioned spaces, see [27].
Further on, we need to define the continuity module kg by: Vh > 0, Vv € C%a, b]

ko(v,h) = sup |u(z) —v(y)l,
|z—y|<h

and the continuity module k1 : YA > 0, Yv € C[a, b]
k1(v, h) = Kko(v, h) + ko(V', h);
the continuity module k1 o of any functions defined in the square [a, b]?: Vz € [a,b], Vh > 0, Vg € C°([a,b]?,R),

/11,0(93 h)(I) = sup \Q(I,yﬁ *g(x,y2)|,
ly1—y2|<h

and the continuity module x4 1 as: Va € [a,b], Yh >0, gfg e ([a, b}Z,R)
x

k1,1(g, h)(x) = K10(g, h)(x) + K1,0(029, h)(x),

where J,¢ is a partial derivative of g with respect to x.
Also, we recall for any vector v = (vg,vy,...,v,)" € R+

Iollgns = max |vi],

and the matrix norm of 7' = (t;;)1<i,j<n € R™*"
n
T |||= > Jtisl-
17 11= s, 3
i=

3. Problem Position. We assume that K; in (1) satisfies the following hypothesis (#;) for i = 1,2
0K;
Ox

(z,t) € C°([a,b]*, R),
(H1)

dM; > 0, max (Ki(%t) )

a<z,t<b

0K;
t < M;.
Ox (=, )‘ )
and the singular part p meets the conjecture (Hs)
p € WH(0,b — a).

li / = .
lim [p'(s)| = +o0
Under the assumptions (H1) and (Hs2), one can implicitly find the derivative v’ :

b b
Vz € [a,b]:  u(x) = / %(xﬂf)u(t) dt + /p(|m - t|)%(x,t)u’(t) dt +

b
+ / sign(z — Op' (|2 — ) Ka(e, )y () dt + ['(2),  (2)


https://road.issn.org/

BBIYUCJ/INTEJIBHBIE METO/bI I IPOTPAMMUWPOBAHUE / NUMERICAL METHODS AND PROGRAMMING 121 a
2022, 23 (2), 117-136. doi 10.26089/NumMet.v23r208

where
1, if = >t

sign(x —t) = {

-1, else.

4. Analytical Study. In this paper, we focus on the numerical solution of (1) by applying two different
methods: the collocation b-spline and the product trapezoidal rule (or product integration). However, before
numerically solving the integro-differential Fredholm equation, the existence and uniqueness of its solution must
be verified. Below, we present the theorem that provides for these properties. But first, we introduce the linear
operator A by:

A: CYa,b) — C'[a,b],
u — Au(z) = /Kl(:c,t)u(t) dt + /p(|x — t)) Ka(z, t)u' (t) dt. (3)

The equation (1) is rewritten as
(M — A)yu = f, (4)
where [ is the identity operator of C''[a, b].

Theorem 1. If |\ > 2<(b —a)My+ M || p [lw11(0,p—q) >, then the equation (4) has a unique solution.

Proof To prove that the equation (4) has a unique solution, we need to demonstrate that (Al — A)~!
exists and is bounded. Remind that the norm of the operator A reads

IAll = sup [[Aullcifa)-

Hu‘lcl[a,b]gl
It is easy to proof that

|[Au(z)| < ((b— a)My + Ma|lpllpij05-a)) lullcr (o),
|(Au)'(z)| < ((b—a)My + Ma|pllwrijop—a)) lullcifay-

In this case we obtain
Al <2((b—a)My + Mal|pllwiajo,5-a)) -

If [A| > 2((b—a) My +Ms||pllwi.1(0,p—a)), then ||A|| < |A]. Accordingly to the Neumann’s theorem [17], (A —A)~!
exists and is bounded. This fact proves the statement of the theorem 1. For more details about the proof
see [21, 22].

5. Numerical Methods. In many research papers devoted to the study of the integro-differential types
of equations, an approximation solution based on the application of the product trapezoidal rule is constructed.
This method of numerical solution is very useful in problems with singularity term. Recently, another class of
the numerical methods was developed to look for a numerical solution of (1). It relies on the application of the
b-spline approximations. The advantage of the b-spline collocation method is that it treats the equation (1)
instead of the two equations (1)—(2), so we get an algebraic system of one block only.

These approaches are known for their simplicity and accuracy. In this section, we develop these two
methods for Fredholm equation and study their convergence.

5.1. Collocation b-Spline Method. To use the collocation processes, primarily we need to give defini-
tion of the cubic b-spline functions (see [23, 25, 28-30]).

Definition 6. Let A, = {a = g < 1 < ... < x, = b} be a uniform partition of interval [a,b] with
b—a

x;=a+th and h = . Let Bs(A,,) be the space of cubic b-spline functions:

Tit1

B3(A,) = {Se C*a.b]: S|, . €P i=0,1,...,n—1},
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where S|[$i7$i+1] is the restriction of the spline function S : [0,1] — R in each sub-interval [x;, ;1] and P? is

the space of cubic polynomials. For i = —1,0,...,n,n+ 1, we define the following cubic B-spline:

(x —xi_2)°, T €[22, xi 1],
) (x —mi2)® —4(x —2-1)%, o€ [ii1, 24,
B}(z) = 73 ) @2 —2)° =A@ —2)°, @ € [m,migal, (5)
(Tig2 — )3, T € [Tit1,Tiya],
0, otherwise.

Here the values x_; at i =3,2,1 and xp41 stand for x_; = a —ih and Tp41 = a + (n+ 1)h correspondingly. It
is clear that {B_1, Bo, B1,...,Bn—1, Bn, Bny1} forms a basis of B3(Ay,). Then B3(Ay) is a finite dimensional
linear sub-space of C*[a,b] with dimension n + 3.

We define (P3),en+ as the sequence of linear projection operator

P3: CYa,b] — B3(Ay)
n+1
v — Pu(z) = Z ;B (). (6)

i=—1

It fulfills the following interpolation condition for all v € C''[a, b]

P3v(x;) = v(z), i=0,1,...,n,
(Piv)'(a) = v'(a), (7)
(Piv)'(b) = v'(b).

n

We construct an approximation solution u,,, which satisfies the following equation:

M, = P3Au, + P2 f. (8)

§5.1.1. Convergence Analysis. In this part, we will demonstrate the convergence of P3u to u in the

sense of the norm C'[a,b]. Previously, the authors of [31-36] have proven this convergence for the case when
u € C*[a,b]. The convergence in the Banach space C°[—1,1] was considered in [37, 38|, whereas the case of
the periodic function u was investigated in [39]. To prove this convergence, we use the spline interpolation of u
on the grid A,, with n > 1. In each interval [z;_1, ;] this spline S, (z) (see [23, 32, 34, 35]) is defined in the
following way:

x; —x)3

- ( i — i . Mi_1h2 Ty — X
Snlr) = Mioi—5 on Ui 6 o)t
Mihz r— Tj—1
+ (u(xl) - >( 5 )7 9)
where the moment M; is M; = S"(x;).

One should note that any cubic spline S, (z), constructed on segment [a,b], is described by the linear
combination of the cubic b-spline [33, 37, 40, 41]. In this regard, S, (z) will read:

Vo € [a,b]:  Sp(x) = Plu(z). (10)
This leads to the following equality:
I(I = PY)ullorfa = lu = Sallora- (11)

The values of the derivatives of the spline S, (z) (9) over z in the left and right limit of the point z; are

- h h u(w;) — u(@i—1)
7)) = =My + — M, + —— izl 12
Sila7) = Mooy + 3 M + ML, (12)
Sp(af) = D - EMM 4 Uin) — (@) (13)

3 6 h
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The continuity of S/ (x) at x; yields for i =1,2,...,n—1

h? h?

However, for different applications it is more convenient to work with the slopes m; = SJ,(x;) rather than the
moments M;. Below we present another representation of S,, and S), in each segment [z;_1, ;] :

Mo+ AM, + Miyy = 6<U($i+1) —u(w;)  u(wg) — U(tTil)). (14)

5131'71’2‘%71’1'_ r — T;— 2131'71’
) =y ) @)
(21— 2)2[2(x — 1) + 1] (2 = i) 2w — ) + 1
+ u(wi—q) 02 ! + u(x;) ! 2 , (15)
(x; — 2)(2x;—1 + 2; — 32) (x —xi-1)(22; + ;-1 — 3x)
S;L(x) =mi-1 72 —my 2 +
+ %6(% —2)(z — zi1). (16)
The limit values of the second derivative of S(x) at z; are equal to
_ 2 4 w(z;) —u(zi—1)
S//(iri ) = Emi,1 + Emz - GT7 (17)
4 2 u(x; — u(x;
S"(xF) = — i = Mg + 6%. (18)
Since S”(z) is continuous, we get that
sy + g gy = 3D Zu@ien) (19)

h
To determine all (n + 1) quantities including in (19), we should add two extra relations following from the
boundary conditions. Using the interpolation conditions in (7) and the equation (10), we find that
S!(a) =u'(xg) and S (b) =u(zy,).
Now, accommodating the equation (3), we obtain the following relation:

SYRSYR ECAECS N |

In the similar way, using (2), we get

B —hu(xnl)}

The recurrent relations (14) and (19) can be written in the matrix forms CM = E and Cm = D corre-
spondingly with matrix C' of size (n +1) x (n+ 1)

2 1 o 0

1 4 1 ......... 0

01 410 0
C= :

0 ......... 1 41

0 .21

and M = (Mg, My, ..., M,)" € R"" m = (mg,my,...my,)* € R". The vector D = (do,dy,...d,)" € R
has the following components

dy = 34F) ~ U($0)7
g = gtE) —ulziy) L, (20)
4, =3 w(xp—1) — u(zy,)

h 9


https://road.issn.org/

a 124 BBIYUCJIMTEJIBHBIE METOOBI 1 ITPOTPAMMIPOBAHHNE / NUMERICAL METHODS AND PROGRAMMING
2022, 23 (2), 117-136. doi 10.26089/NumMet.v23r208

and the elements of the vector E = (eg,e1,...,e,)" € R read
6 _
u(Tit1) —u(wi)  ul@i) —u(@i-1) .
e; =6 +1h2 - s YY), i=1,2,...n—1, (21)
o — % (u,(xn) _ W>—hu@1>>

Theorem 2. Let P3u is defined by (6) and u is the ezact solution of (1), then
lu = Plullcrfae < cr(u, h), (22)
where ¢ is a positive constant.

Proof Using the spline formula (9) in each interval [x;_1, z;], we get

x—x) (1 — 24—
PRu(e) = ule) = S,(2) — u(a) =TI (00, — iy — )My (0 = 2+ )M+
i) T ul(wi— i+ T —2
+ w(@i) +u(@i-1) F@)) = (wz:) — u(zimy) ) ZTZELT 20 (93)
2 2h
If we demand that the following inequalities are fulfilled
(z; — x)(x —24_1) < R,
(QICZ — Xij—1 — 1’) < Qh,
(x —2x;—1 + ;) < 2h,
|z; + 21 — 22| < h,

then, we obtain

h? u(z;) — ul(x;— w(z;) + ul(x;—
1Su(e) ()| < [0+ 0] 4 [UELZ T ) o]
This leads us to the relation
2h2 3

[1Sn — ulloo < T”M| Rrtt 5 ko (u, h). (24)

On the other hand, we have M = C~'E and ||M||gn+1 < ||| C7 ||| | E|lgn+1, where
w(wipr) —uw(z;)  w(x;) —u(xi—q) 3
HEHR +1 Oréliaé(’fJeZl h2 Oréliagxn h h ~ h2 HO(U” h) (25>
Thus,
—1 3
150 = ulloe < (21 €7 [ + 5 JRo(u, ). (26)

Now, applying the interpolation formula (16) in each segment [z;_1,x;], we find

sy (o) - M) [:2 (x S “”)2 - ﬂ [mi_l o (@1 + g — () + () + (i) +

o (W)] + % (w - m*;“) [mi (@) + iy — (@) + (@) (@) [ @7)
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Here we have used the relations:

2
6 6 T — Tj—1 3
hQ(x—x“)(wi—w):—(x— +t35

2
1 3 i— i 1 1 i i—
= o) (2w 42 - 32) = (x_ W) e Hﬂvl)
Taking into account the expressions, presented above, one can get

1

S;L(l') - M < 3 |:mi1 — u’(mi,1)| + |mi — u/(xi)| + QKQ(U/,h)] +

h

+ [y — ' (x)| + [my—1 — v/ (x;_1)| + ko(u', ). (28)

Let us now write down the following obvious equality

o(n-2) = (1 ). -

where T,,1 is the identity matrix of size (n + 1) x (n + 1). The r.h.s. of (29) is equal to:

- do  d -

3 6

—dy dy do

. 6 3 6
(InH - 60)1) = ; : (30)

Using the definition of the vector D (20) and the condition

()~ )| ), (31)
we obtain the following result

dy d
5~ 5| < ol h),
—dioy d;ds .

G ! 5 6“ < 6ro(u/h), i=1,2,...,n—1, (32)
—dp_1  dy

c L + 5| < 3ro(u',h).

C
The inequalities (32) enable to obtain that H (In+1 - ) D < 6 ko(u',h). In this case, it follows from

6 Rn+1
(29):
D _
=] <o ot (33)
Rn+1
Substituting (33) in (8), we arrive to the inequalities
() — WL ZIEDN g ) 4 1) ool ). (39)
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It is evident from (34) and (31) that

C o < ooy w@) —u(wiog) wi) —ulwia) | o
155 — v'lloe < max 1S, (2) . + max, - u'(z)] <
< (U] 71 +2) mo(w', h). (35)
Combining (26) and (35), we obtain
lu = Plullcrfan = llu = Sallorae < ¢ m1(u, h), (36)

3
where c:max{11| CH+1 2l C7H ]|+ 2}.

Theorem 3. Let P3 be a projection operator given by (6) and A is a compact operator defined by (3),
then

lim ||(I — P2)A]|l = 0. (37)
n—oo

Proof Since A is compact, then the set M = {Au, u € Clla,b], Hu||cl[a b < 1} is relatively compact in
the Banach space C'[a,b] and by Banach—Steinhaus theorem’s [19, 42], P2 converges uniformly to the identity
operator I in C*[a,b] :

hm (I = PHA|| = lim sup ||(I — PS)AUHCI[GJ,] = su/\pil (I — Ps)’()”(j'l[a,b].
ve

oo ”uHcl ,b]

Under above theorems, we get that P32 is pointwise convergent to the identity operator and P2 A converges
to A, then (M — P3A)~! exists and ||(AM — P3A)71|| < oo (see [17]).

Theorem 4. Let u, be the solution of (8) and u be the exact solution of (4), then

ﬁﬂ(}oHU - un”Cl[a,b] =0 (38)

n—r

Proof For large n enough, u — u, = (Al — P3A)™' [(A— P3A)u+ (f — P3f)]. Then, the following
estimation is valid:

= wnlloras < N = PR [ = BYA| + [T = Pl agey ] (39)

When n — 0o, we get to the desired result.

§5.1.2. System Approximation. For all x € [a, b] it follows from the equation (8) that

M () = PP Au, (z) + P2 f (). (40)
We put z = z; for j =0,1,...,n. Then by the interpolation conditions of the sequence (P3),en (7), we get
Aun (25) = Aun (z;) + f(25), (41)
which is equivalent to the following algebraic system for j =0,1,...,n

n+1 b

S [ABY () / Kol B30 dt = [y — o) Kalop, 0B0O) dt| = flay), (22

i=—1 a

where {a;}7"1!| are unknowns coefficients to be determined.

Thus, we arrive to the system (42) containing n + 1 equations with n + 3 unknowns «;. To handle this
problem, we introduce B3;(x) as a modified basis of cubic b-splines [28]

%o(2) = Bi(x) + 282, (x), for j =0,
B3 (z) = B}(z) — B?, (), for j =1,
B3;(x) = Bi(x), forj=2,...,n—2, (43)
B3, 1(z) = Bg—l(l‘) - B?H—l(x)? forj=mn-1,
B3,(z) = B3(z) +2B3 | (z), for j = n.
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Table 1. The values of the modified b-cubic spline and its derivatives
x; j=0 j=1—2 j=1—1 j=1 j=1+1 j=1+2 =n
B3i(xj) 6 0 1 4 1 0 6
— 6 3 3 6
B3;(x;)) —= 0 —— 0 - 0 -

In the table 1, we present the values of B3;(x;) and its derivatives.
Finally, the solution w,, will have a new representation

Vo € a,b] 1wy,

i @B (z (44)
=0

and the system (42) will have a new form

b

*() dt - /p(lﬂij —t]) Ka(z;, t)(BX1)) dt| = f(x;), (45)

a

Zaz /\B (x;) /K1 zj,t)

where {@;}I"_, are new (n + 1) coeflicients to be determined.

5.2. Product integration. In this section, we apply the product integration method to the equations
(1)—(2). First, we need to define the uniform partition A, of the interval [a, b] by

—a i:O,l...,n}.
n

Vn > 1, Anz{xiza—kih, h:b

There are two parts in equations (1) and (2), namely the regular and the weakly singular. Therefore, we utilize
two methods to construct a numerical solution of (1)—(2). The classical Nystrom [19, 43] method is used by us
to treat the regular part. For that we employ the following approximation:

b

Vg € Ca,b] : /g(x)dac ~ Z wig(z;), (46)
i=0

a

where {w;}?, are called the weights, which we choose in accordance to the trapezoidal rule

b— h

h = a, Wo=Wp=7, W =Wr=...=Wp_1=A~h,
n 2

zi=a+ (i—1)h,i=0,1,...,n, where Zwi:b—a.

To deal with the weakly singular part, we apply the product trapezoidal rule [17, 42]. For all L € C%([a, b}, R),
v € C%a,b] and Vn > 1, Vt € [a,b] :

[L(m,t)v(t)}n =7 [(wi — ) L(x, i—1)v(zi—1) + (t — —1) L(z, 2)v(z;)]. (47)

Using the described above two numerical schemes (46) and (47), we get the following system

x) = ZwiKl(x,xl u(x;) +Zwlz VKo (2, 2)u (25) + f(2) + e n(x) + E1,0(2),
i=0

n

) = S aute) + 3 1) G2 ) +en @@

+f(x) + e2.n(x) + E2n(x) + Egn(x),
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where

) -

ara(e) = [ = Op(le —t) de

_ 1 b

an) =3 [ (=)ol —t) dt

) 1 x4 1 Ti—1 .

w14(z) = 7 / (t—zi—1)p(Jz —t|) dt + 7 / (ip1 —t)p(lz—t))dt, i=1,...,n—1,
and

) T,
wan(z) = 7 / sign(z — t)(t — xp_1)p (|z — t|) dt
I,L 1
1 -
wai(z) = 7 / sign(z — t)(t — z;_1)p' (|Jz — t|) dt—i—h /sign(w—t)(xiH_t)p/(|x—t|)dt7
Ti—1 a3

The local errors {e,,,} with p=1,2 and {€,,} with p=1,2,3 at ¥n > 1, included in (48), read

b n
e1n(z) = /Kl(x,t)u(t) dt — ZwiKl(%xi)u(aci), (49)
b
21n(@) = / (12 — ) Ko, ) (1) dt — Zw“ VK (2, 2 )l (), (50)
=0
b
K "\ 0K,
n( — )dt — Y wi—(x, z;)u(x;), (51)
£z / o ; o
Eon(z) = / (|a:—t|) e, dt—Zw“ 3K2 (2, 2l (), (52)
ab
Ean(z) = /sign(x—t)p (|lz — t|) Kao(x, t)u'(t)dt — ngz VKo (2, )’ (4). (53)

a

§5.2.1. System Approximation. We put z = z; and assume that the presented errors (49)-(53) are
negligible in (48). Then we get the following linear system with 2n + 2 equations. For 0 < j < n

szKl .%']71'1 U; +Zwlz xj K2(xj7x2)u +f]7
=0
(54)

n

8K1 " _ 8K2 —
/\U; = ;wiﬁ(ay,xi)ui + ; |:W17i(xj)8$(zj’xi) + wg,i(xj)Kz(l'j,LEi) U; + fj/,

where f; = f(z;), f; = f'(z;) and u;, u; are the approximations of u(z;) and u'(z;) respectively.
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Theorem 5. If 2|(b—a)Mi + ||pllw1i(0,p—a)M2| <| A|, then there exists a unique vector

_ 1o I\t 2n+2
U = (ug, 1, ... Up,ug,uy, ... u,)" €R

with the norm
|U||gzn+2 = max |u; | + max |} |,
0<i<n 0<i<n

that is the solution of the system (54).

Proof We use the Banach’s fixed-point theorem [17] to prove the solution’s existence and uniqueness of
the system (54). It can be rewritten in the following form

U =T[U]

where T[U] is a vector of R?"*+2 given as

IR RS _
szif{l(l"j,l’i)ui + szl,i(mj)KZ(l'ja zi)u; + fj, 0<j<mn,

n n

— a‘Kvl 8K2
TU] = )\sz (@jn—1,2i)u; + z% [wl i(z5) (xj,n,h:ri) + (55)

+ o i(z) Ko(zj 1,11]u +fiono1, mH1<i<2n+2

Let U and V are two vectors of R2"*2. Since

1 — 1 |
‘)\gwifﬁ(wj,xi)(ui /\Zz;wl () Koz, ;) (uf — vf)| < W iz_;wi \Kl(mj,xi)\orél%xn | wi —v; | +
n
+ |2l | 1Kt ) e = vi|
and

" 0K 1 — K.
’Azwiaxl(xj—"—l’ ;) (u; —v;) + XZ [wl,i(xj)a;(xj_n_l, i) + @21 (25) Ko (2j—n—1, xi)} (uj — UQ)’ <
=0 i=0

2

n

Zwl i(;)

’Kz(%‘al’i)

1

<
V| 2] | (7)o

Ox (xj7 iEZ) 0<i<n

0K,
max |u1 v |+ |2

K.
‘ 2 max\u;—vﬂ—i—

02,i(25) Jnax | u; —vj |,

<ikn

n
D i

where =b—a, Zwl i(z;)| <|lpllero,p—a) and ng ()| <Pl 0,—a), then
=0 =0
2(b—a)M1 2]\42||p||W11(0 b—a) ’ /
- ntz  ————— i — Vi . i — Ui |-
ITI0) = TV onse < 2Ot e =y |+ 2P O e [ —of| (56)

This means that

(b—a)Mi + |lpllwir0,p—a)yM:
Y

[TU] = T[V]|[gen+> <2 2||U = V|lganss. (57)
Assuming the validity of the inequality 2 {(b —a)Mi + |[pllwirop—a)yM2| < | A | and using the Banach’s fixed-
point theorem, we conclude that the approximate system has a unique solution.

§5.2.2. Convergence Analysis. The convergence analysis of this method is totally different from the first

one because in this case we use the numerical techniques to prove that the errors (49)-(53) tend to zero. We
start with the following theorems, which explain this decrease of local errors.
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Theorem 6. Let n > 1 and €, be a vector of R>"+2

t
En = (81,n(9€0)7€1,n($1), e 7El,n(xn)y52,n(x0)752,n(x1)a e ,52,n($n)) )
then

llen|rznrz < (b—a) L)m_ézxnmJ(Kl, h) () |[ullora,p) + 20 Hl(%h)} .

Proof Fori=0,1,...,n we have

n—1 Tit1

lern(@)] = | Y / Ky (xi, t)u(t) dt—g[Kl(%%H)u(fﬂjH)+K1($i75€j)u(l‘j)} ;

=0

Tj

ean(en)] = Z / LT (0t~ | G anpinutarn) + 55 )ty |

=0 5

But for all ¢t € [z}, z;41],

Tj+1

Ky (z;, t)u(t) dt — g[K1($i7$j+1)u($j+1) + Ko (25, m5)ulty)]| <

< | o o W)@l + Mo )] (59
Y or 0K 0K
1 1 1
O oty dit — 3 [T iy g 0) + S (o ()| <

< h[ [nax 1 0(0: K1, h)(23) [ullcrfa,p) + Miko(u, h) ] . (59)

This leads us to:

1) < (b a)[max oK, 1)) o + Mm(wm},

<ign

lea,n(z:)] < (b—a) [ max K10 (ale, h) (z3)|ullcriap) + Mika(u, h)] .

0<ign

And finally to:

g o)+ g ez 0] < (6= )| g1 (1. 1) el + 2000 ).

As a result, we obtain
llen |lrzn+e < (b—a) [Omlaxnm V(1 h) (@) [Jull e fa,p) + 2My K1 (u, h)} .

Theorem 7. Letn > 1 and &, be a vector of R2"+2

_ _ _ _ _ _ _ _ _ t
En = (E1,n(20),E1,n(21), - -, E1n(@n), E2,n (T0) + E3n(20), E2, (1) + E3, (1), .., E2n(@n) + Egn(an)) , then

||§n||R2n+2 <4 l:Mglﬁ (u, h) + maé(nﬁl,l(Kg, h)(xj)|u||cl[a7b]} ||p||W1«1(O,b7a)~

SVAS
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Proof For large n enough,

b

|E1n(25)| = /P(|$j — U)K (aj, )y’ (8)dt — Y @ () Ko, o) ()| =
v =0
/ (25— ) (t— i)
T;—1 t—x;_
= [ oty = |ty ) — = Koo utoicn) - EEE g utan)| a <
b
< [ 1ot — ] [E=H ntpor, ) + 2 s s (500, 1))l +
X J h ) h 0<j<n ) J [a,b]
MM ko(u', h) + M max k1,0(Ka, h)(x;)||ullcriay| dt.
h h 0<i<n ’ J [a.0]
Then
b
enn)] < 2| Mo (0,1 + s 11 (K e ol [ [l = oD

a

In same way, we get

b
|E2n ()] < Q[Mgm(mh) + max k1,1 (Ko, h)(x))||ullc1]a, b]} /’p (lx; —t]) ‘dt

IIN

()] < 2{ a0+ g . (K )

<isn

]p%m _ t|>]dt.

S _ ®

Summing (61) and (62), we find that

[E2.n () + E3n(s)| <2 [Mwl(u, h) + max k1 (K, h)(l“j)”Ulcqa,b]} Pl w1 0,—a)-

SVAS

Finally, it follows from (60) and (63) that

IIN

||§n||R2n+2 <4 |:M2H1<u h) + Ogla<x K1 1(K2, h)(xj)|u||cl[a7b]:| ||p||W111(0,b7a)~

Theorem 8. We have hr}rl err, = 0, where err,, is the local discrete error given by
n—r+0o0

err, = max |u(x;) — u;| + max |u'(x;) — u.
o<ign 0<isn

Proof For large n enough, we have

A fu(z:) = wil < lern@i)| + [Ern(@) | (Mi(b— a) + Ma|lpllwiaop-a))errn,
X ! (26) — wi] < Jern(@i)| + [E2,m (@) 4 3,0 (@) [ (M1 (b — a) + Ma|[pllwr1(0,0—a)) €7Tn-

Then
My (b—a) + Ma|[pllwi1(0,b-a)

<2
erry < i

||57L||R2n+2 + ||§||R2n+2 s

and when n — oo we get err, — 0.

(64)
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Table 2. The error between the exact and approximate solution of equation (65)

n Cubic b-spline Time (seconds) Product integration Time (seconds)
10 2.5258e-05 0.404550 1.5509e-04 0.566668

50 3.9863e-07 5.012754 6.2018e-06 10.075807
100 6.8110e-08 18.880831 1.5504e-06 37.706229
200 1.1746e-08 67.1629 3.8761e-07 134.325839

6. Numerical Test. To evaluate our numerical treatments, we consider the following example

Ve e[0,1]: du(z) = (z + t3

+/\/|x7 u'(t) dt + f(x), (65)
0

O\H

where |A| = [8i + 6] = 10 and
. 2 1 4 5
f(x) = (8i+6)a” — 3 arctan(l + z) — arctan(x) T 2z +3)(1 — x) + 2x2

In this example p(x,t) = /|z — t|, |K;(x,t)| < M; for i = 1,2, where My = 2, My = 1. The exact solution

of (65) is u(z) = 2.
If || satisfies the hypothesis that 10 > 2((b—a)M; + Ms||p||lw1.10,6—a), then the equation (65) will have a
unique solution. The absolute errors err = Jnax |w(z;) — ;| of the proposed methods are shown in the table 2.

\\

Below we present the figure 1, demonstrating the behavior of the absolute errors of the numerical solutions
of (65) in two considered approaches.
Let us consider the next example

10
+/\/|x—tu’(t) dt+ f(x) (66)
0

u(t)
vz € [0,10] : :/7&
0,10) ) t2+x+1
with
2 3 2 3
f(x) =60z — V101 + 2 +V1+z — 5(10—95)2 — 3%,
and |A| = 60, p(z,t) = \/]z — t|, | K;i(x,t)] < M; for i = 1,2, where M7 = 2, My = 1. The exact solution of (66)
is u(x) = .
—4
1'6[:(10 ‘ . . .
TThem —&— B-spline Error
14 L \\\EI\\\\ --8-- Product Error| |
1.2} e
E\\\\
1.0t Hheg
E\\\\
0.8} Fal
E‘\
T

0.6 ]

0.4t

" W

0.0 : ' ' !

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. The absolute errors of the numerical solutions of (65), obtained within the cubic b-spline method with n = 10
and the product integration
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Table 3. The error between the exact and approximate solution of equation (66)

n Cubic b-spline Time (seconds) Product integration Time (seconds)
50 5.3291e-15 4.867362 1.0658e-14 9.230699
100 6.2172e-15 19.957707 9.2258e-15 36.143670
200 7.1054e-15 84.333753 7.1054e-15 147.454297

133 a

If |A| satisfies the assumption that 60 > 2((b — a) My + Ms||p||w1.10,p—a), then the equation (66) will have
a unique solution. In the table 3 we present the values of the errors for various numbers n of discretization.
The corresponding absolute errors of the numerical solutions of (66) are shown in the figure 2.

%1071

1.2 T T T T
—&— B-spline Error

--8-- Product Error

1.0r

0.8

0.6

0.4

0.2r

0.0

Figure 2. The absolute errors of the numerical solutions of (66), obtained within the cubic b-spline method
with n = 50 and the product integration

Let us turn to one more example

1 1
Ve e [0,1]: Au(x) = /eXPu(S)—Fx dt + /exp(x — )|z —t|%u’(t) dt + f(x), (67)
0 0

where
4
3

f(x) =5exp(z) —log(xz + exp(1)) + log(l + =) — Zexp(x)x% — %(1 — )3,

and |\ =5, p(z,t) = |z — t\%, |K;(z,t)| < M;, for i = 1,2, where My =1, My = 1. The exact solution of (67)

is u(x) = exp(x).
If |A| satisfies the hypothesis that 5 > 2((b — a) My + Ma||p||w1.10,p—a), then the equation (67) will have a
unique solution. In the table 4 we present the values of the errors for different numbers n of discretization.
Below we plot the figure 3, demonstrating the behavior of the absolute errors of the numerical solutions

of (67) in two studied approaches.

Table 4. The error between the exact and approximate solution of equation (67)

n Cubic b-spline Time (seconds) Product integration Time (seconds)
10 9.8991e-05 1.033524 4.8240e-04 1.171200
50 1.7845e-06 5.664957 1.9252e-05 11.973596
100 3.3413e-07 27.674090 4.8123e-06 43.865372
200 6.3835e-08 94.779000 1.2030e-06 153.695566
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—4
5.0 x 10 ; . ; .

]
—&— B-spline Error

4.5 --8-- Product Error|7]
=

40t 1

3.5plg T T
3.0r T
2571 T
2.0 1
1.5} 1
1.0t
0.5+ 1

OO 1 L 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. The absolute errors of the numerical solutions of (67), obtained within the cubic b-spline method
with n = 10 and the product integration.

Based on the error values of the two considered approximate methods and on the used machine time, we
conclude that in all three examples the b-spline collocation method is better than the product integration one.
Furthermore, in contrast to the latter one, the convergence of the cubic b-spline method does not depend on
the sufficient condition in theorem 5.

7. Conclusion. In this paper, we have investigated the numerical solutions of the linear integral Fredholm
equation with a weakly singular kernels (1). For this goal, we have considered two approximate methods for its
solution: the b-spline collocation and the product integration method. In the first of them, we have used the
principle of the collocation method with b-spline bases, which led us to a conversion of our equation into the
system containing n 4+ 1 equations. In the second one, based on application of the product integration method,
we have obtained the algebraic system containing 2n + 2 equations. One should emphasize that the number
of equations plays an important role in saving time in the resolution. This fact is a positive point for the
b-spline collocation method which is presented in the numerical test. We have provided theorems showing the
convergence of the b-spline collocation solution and its product integration counterpart to the exact solution.
Through the numerical example we have noticed that the first method is better in terms of convergence and
efficiency. We have provided our studies by the certain assumptions enabling to construct the sufficient condition
which ensures the existence and uniqueness of the found solution. As perspective, we will try to modify these
assumptions or to study a nonlinear integro-differential equation with both weakly singular kernels.
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