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Abstract: In this paper, we consider the Fredholm integral equations of the second kind and con-
struct a new iterative scheme associated to the Nystrom method, which was elaborated by Atkinson
to approximate the solution over a large interval. Primarily, we demonstrate the inability to gener-
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Awnnorarus: B nanHoil pabore MBI paccMaTpuBaeM HHTerpaJibHble ypaBHeHus: @pearojbma BTO-
pPOro pojia U CTPOWM HOBYIO UTEPAIOHHYIO CXEMY, CBSI3aHHYIO ¢ MeTojioM Hucrpema, KOTOPBIit ObLT
paspaboran ATKHHCOHOM sl AMIMTPOKCUMAIUH PeIlieHns Ha 6OJIbITOM uHTepBaJe. [Ipexkie Bcero, Mbl
JIEMOHCTPUPYEM HEBO3MOYKHOCTH OOOOIIEHMST UTEPAIIMOHHBIX METOI0B ATKUHCOHA. 3aTeM MbI B JIeTa-
JISIX OTIHUCBHIBaEM HAaIlle MOAUMDUIINPOBAHHOE 00001eHne U 00CYKIAeM €ro IPEeuMYIIeCTBa, TaKNe KaK
CXOJIMMOCTD UTEPATOHHOTO PEeHns K TOTHOMY B CMBICTe HOPMBI Ganaxosa mpocTpancTsa C[a, b].
Hakonerr, Mbl IpUBOUM YUCIEHHBIE IPUMEPHI, UJLTIOCTPUPYIONIE TOYHOCTh U HAJIEKHOCTH HAIIETrO
00001IIeHYSI.

KurouyeBbie cioBa: mHTerpasibHble ypaBHeHusi Opearojbma, 9uC/IEHHOE WHTEIPUPOBAHUE, UTEPa-
IHOHHBIE METO/IBI.
Mg murupoBanus: bykancyc C., Maugs Ce, Taup B., ['u66u X. [Tocrpoerue 0000IIIEHHBIX UTEPa-

IMOHHBIX METOJIOB, MCIOJIb3yeMbIX Jisl PellleHus HHTerpajabHoro ypasHenus Openronsma // Beraunc-
JIUTeJbHBIE MeTO/Ibl U porpammupoBanue. 2022. 23, Ne 4. 350-364. doi 10.26089/NumMet.v23r422.

1. Introduction. It is well known that integral equations are an inherent part of various fields of modern
sciences and are an important part of pure mathematics, in particular [1]. For instance, they arise in many
physical problems such as description of the radioactive transmission [2] and transport problems in astrophysics
[3], the nuclear reactor theory [4, 5], the kinetic theory of gases [6], elasticity and fluid mechanics [7]. Recently
this kind of integral equations has been applied to medical problems like the study of the development dynamics
of Covide 19 [8]. Thus, there can be considered as a powerful mathematical tool for solving various modern
scientific problems.

Today, with the rapid development of computer science, we find that many researchers have been able
to devise a set of numerical methods that are best suited to this type of equations. A good example is the
evaluation of the electric or magnetic field integral equation [9], which allows to obtain solutions close to exact
ones. However, the main barrier remains because they require a large memory space to store the entire array
in RAM. To solve this problem, scientists are developing iterative methods, which are easier to realize in
comparison with direct methods. They require less memory space and less computing power and provide a
good approximation of the solution as well.
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In this manuscript we are interested in the Fredholm integral equation of the second kind. This type of
equations causes a great mathematical interest and is represented as follows: It is necessary to find a solution
u € C°a, b] that satisfies the following equation

b
Vielab), uft)— /k(t, syu(s)ds = f(2), (1)

where A # 0 is a real or complex parameter, the kernel k € C°([a,b]?,R) and f(¢) is given function defined in
the Banach space C°|a, b].

A great number of works is devoted to the search for the best possible numerical solution of the equation
(1) by inventing new methods or by granulating and improving previously known methods. Let us mention here
only a few of them:wavelet methods [2], Galerkin [10,11], collocation [12,13,14]|, quadrature [12], Chebyshev
and Legendre collocation method [15], Rayleigh-Ritz method [16], deep learning [17], Ten-non polynomial cubic
splines method [18], Gaussian process regression [19] and Taylor expansion [20].

The most famous existing method, which is considered one of the simplest, is the Nystrom method |10,
12], where it proceeds by converting the equation (1) into an algebraic system whose size varies depending on
the different divisions which we take on the interval [a, b]. The bigger size of the interval and the more divisions
of [a,b] which we take, the more time we consume to solve the algebraic system and the more space will need
in the computer memory.

Despite the power and efficiency of the previous methods, they have some problems, including the con-
sumption of a large space in the computer memory and sometimes the consumption of time in the resolution.
To solve this problem, the iterative methods were proposed. The first to suggest this approach was Atkinson.
Since then, the idea of iterative methods has been firmly established in the generally accepted methodology, see
e.g. [21].

Atkinson in his article [22]| suggested two iterative methods. In this manuscript, we follow principles
proposed by him and combine these two methods to find the best version of the possible iterative scheme.
We review some theorems that prove the convergence of the solution. We end our article with examples that
illustrate the importance of the circular we have made and the effectiveness of the studied approach as well.

2. Atkinson Method. Before we start, let us focus here on some important points that will be used by
us hereafter. First of all, we define the norm of the Banach space C°[a, b] in the following way:

Yo € C’O[a,b]7 lvllcofa,s) = arg?é(b|v(t)|.

We denote by BL(C°[a, b]) the Banach space of linear and bounded operators, which defined in C°a, b] in itself.
It is equipped with the following norm:

VA € BL(C%a,b), A= sup [[Avllcop,y-

[lv cOla,b)<1

Now, we define the linear operator K as
b
K: Ca,b] — COa,b], v — Ko(t) = / k(t, )u(s) ds. 2)

Then, the equation (12) may be rewritten in the next equivalent form:
(M — K)u=f, (3)

where [ is the identity operator of the Banach space C°[a, b].

If the condition [A| > ||K|| is fulfilled, then it follows from the Neumann’s theorem [10] that (A\] — K)~!
exists and is bounded. Thus, equation (3) has a unique solution in C°[a, b]. This means that the existence and
uniqueness of the analytical solution is ensured. This allows us to go on to the construction of our generalized
method and the search for our iterative solution, which satisfies the integral equation (3). For all n > 1, A,, is
the uniform discretization of the interval [a, b]:

Vn}l, An:{a:t0<t1<~~~<tn1<tn:b, h:tj+1—tj, Og‘]gn}
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As the first numerical solution of (3), we propose the Nystrom solution {u,},>1, which obeys the following
approximate equation:
Au, = Kpup + f. (4)

Here K, is the numerical integral operator or Nystrom operator given as:
n
Vn>1, Yve Cla,b], Vtelab], K,(t)= ijk(t,tj)v(tj), (5)
j=0

where {w, }?:0 are called weights, be selected depending on the used numerical scheme. For example, Gaussian
numerical scheme or the trapezoidal rule, or Simpson’s rule [12]. But, for all choices {w;}"_, the following
condition should be satisfied: .
IwW >0, sup Z|wj| =W < +o0.
n>1 )
As was mentioned earlier, the larger the number n, the more time we will spend on the solution and the
more memory space we will consume. To solve this problem, we offer the first iterative method proposed by
Atkinson [22], which is based on a choice of two division numbers of the interval [a, b], namely n and m, such
that m > n. We use the iterative process to calculate the solution wu,,. Thus, for all v > 1 the first iterative
solution {u?, }nsn meets the following equation:

up € C%a, b,
(6)
A\ — K)ulft = (K, — Kp)ul, + f, v>1.

The idea of the second Atkinson iterative method [22] comes through the substitution of w,,, which is satisfied

by the equation:
1 1
m = *Km m N
U \ U + )\f

in the right side of the formula:
()‘I - Kn)um = (Km - Kn)um +f (7)

Then, the second iterative scheme of Atkinson reads

ud € C%a,b],
1 1 (8)
(M — Ky)ultt = X(Km — Kp)Knub, + X(Km —K)f+f, Ww>1.

Two iterative methods of Atkinson are more simple because they are limited. We can’t go further than
the second method. Our goal is to increase the value of (K, — K,)u,, to avoid loss of precision and poor
convergence to zero. For this reason, we apply the same steps of Atkinson. It follows from equation (9) that
1 1

1
—(K,, — K K, —f.
)\( m n)um+ by nUm + )\f (9>

Uy, =
We substitute it in the left side of equation (7) and get the third iterative scheme ¥ m > n:

ud € C%a,b),
1 1 1 (10)
(M — K,)ultt = X(Km — K,)%uY, + X(Km —K,)K,u¥, + f+ X(Km —K,)f, VYwv>1l

In a similar way, substitution of the equation (9) in the right side of the system (10) leads us to the fourth
iterative scheme V m >> n, presented in the following form:

ud € Ca,b],

v+1 1 3, v 1 2 v 1 v
(M — Kp)ultt = E(Km — K,)u?, + F(Km — K,)?Kyu?, + X(Km - K,,)K,uY, (11)
1 1

+f+ Km—Kn)f+ﬁ(Km—Kn)2f, Vv > 1.

3¢

3
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If we repeat the same process p times, we will obtain the first generalization scheme for all p > 1:
u? € C%a,b),

1

(AI - Kn)uilrjl = )\p—l

p—1
1
K, — Ky)Puy, + — (K — Kp)'Kyuy,
m )\q m
q=1

p—1
1
— _ q
+Z‘: i Em —Eu) f+ Vo>
=

At p = 1 we get the first Atkinson’s iterative scheme (8) and at p = 2 the third one (10). We try to find a
method combining three Atkinson schemes. Despite their advantages, there remains the problem of the existence
of (K, — Kp,)K,,. Indeed, in Atkinson’s paper [21], the convergence of the iterative solution depends on the
convergence of (K,, — K,,)K,. Moreover, if one takes a value of p strictly greater than 2, one observes the
divergence of the error from zero. As a result, the best solution can be obtained at p = 2, which is the second
Atkinson scheme.

3. Generalization Procedures. In this section, we review the basic steps that allow us to build the
appropriate iterative scheme. We also present some theorems that prove the convergence of the proposed
iterative scheme.

Using (9), we can rewrite u,, in the following way:

U = (M — Kp) "N K — Kp)um + (M — K,) 7L f. (13)

Substituting (13) in the left side of (9), we find:

A — Kp)uy, = (K — Ky) <()\I — K,) YKy — Kp)tg, + (M — Kn)lf) + f,
= (K — KM — K) "N (K — K )ty + (K — Kp) M — Kp) 7 f+ f. (14)

Now, we substitute the formula of u,, given by (1) in the left side of the last equation (2), we get the following
equation

A — Kt = (K — Kp) (M — K,) N Ky — Ky) [()\I — K) N (K — K, + (M — Kn)‘lf}

+ (K — K,) M —K,)“Yf+ f
= {(Km — K,)(M — Kn)l] (K — KU, + {(Km — KM — Kn)l] f (15)

+ (K — Kp)M — K,) 7 f+ f.

We continue to repeat the same process p times. So that, for each new equation we obtain, we substitute
in the left part the value of u,, given by (1) and get:

(A = K )y, = [(Km — K,)(AT — Kn)l} p(Km — K )um + Ep: [(Km — K,)(AT — Kn)l} qf +f (16

Finally, Vp > 0 and Vv > 1 we can present our generalization iterative system in the following form:

ud € C%a,b],

P p q (17)
(M — Ky)ultt = {(Km — K,)(AI — Kn)l] (K — Kp)u, + ;1 {(Km — K,)(M\I — K,L)l] f+r

Now, using the last scheme, our goal will be to search for the best value of p that can give us the best
numerical solution. We specify that the increase in the value of p is not related to the decrease of the error to
zero. For instance, one can obtain the best numerical solution at p = 5 without further increasing the value of
power p. This is explained in the examples below.
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4. Convergence Analysis. Now, we have to prove that the iterative solution approaches the exact
solution. For this purpose, in this section we consider theorems proving the convergence of the iterative scheme
(17). Primarily, we show the following convergence

Uy, = Um, when v — +4o0. (18)

Then, we prove that
ur, —u, when v — +oo and m — 4oo. (19)

To demonstrate convergence of the Nystrém method, we need to prove the existence of (A — K,,)~*. To
do this, one first has to demonstrate that the sequence {K,,},>1 is v-convergent to K. In this regard, let us
turn to the following theorem:

Theorem 1 Let K be a compact operator defined by (5) and let {Ky}n>1 be an approximation operator con-
verging pointwise to K. Then,
lim || (K — K,)K || =0. (20)
n—oo

Proof 1 Since K is a compact one, then S = {Kv, vllcofa,n < 1} has a compact closure in C%[a,b]. Using

definition of the operator norm, we obtain

K = Kn)K = sup (K = Kn) Koo = sup [(K = Kn)yllcope,s-
Yy

”””co[a,b]gl
Then, it follows from the Banach-Steinhaus theorem [10] that K, converges uniformly to K on S.
Now, we consider the next lemma to prove that (Al — K,,)~! exists and is bounded.

Lemma 1 Forn large enough, let {K,}n>1 be the Nystrém approzimation operator converging pointwise to K
and
lim || (K- K,)K | =0 and lim || (K —K,)K,| =0. (21)
n—oo n—oo

Then (M — K,)~! exists and is bounded.
Proof 2 See Atkinson [12].

In the rest of our convergence analysis, we need to show the convergence of [(K,,, — K, )(A[—K,,)"']P, V p >
0 to zero. For this reason we give the following theorem

Theorem 2 Let {K,,}m>1 and {K,}n>1 be two Nystrom approzimation operators and let K be an integral
operator defined by (5), then

Vp=0, [(Kn—Ky))M —K,) '[P =0, when m,n— +oc. (22)
Proof 3 For all n > 1, we have that (A\] — K,,)~! is bounded, so 3 C' > 0 such that
I = K) < C.

Therefore,
IO = K) =P < [ = K) 7P < P,

which is proved that [(A — K,,)71]? is bounded.
We set A = [(Al — K,,)~1]P. For all n,m > 1 and n < m the following equality is valid:

(K — Kp) M — K) 7P = (K — Kp)PA = (K — Kp) (K — K)o (K — Kp)A.

On the other hand, we have two sequences operators {K,}n,>1 and {Kp,}m>1 of finite rank, this is implies
that they are compact. Then, we can say that (K,, — K,,) is compact. So, (K,, — K,,)A is compact, which
gives that it is bounded. Now, since (K, — K, )A is bounded and (K,, — K,) is compact, we obtain that
(K — K) (K, — K,,)A is compact. Then one can conclude that (K, — K,)P~1A is compact.
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We put B = (K,, — K,,)P"1A. Let define the set P as

P={ B, oo <1}.

Since B is compact, the set P has a compact closure in C°[a,b]. The definition of the operator norm yields
[(Km — Kn)Bll < [[(Km — K)B| + (K — Ky)B].
From theorem 1 follows that {K,,}m>1 and {K,, },>1 converge uniformly to K in P. Therefore,

lim  ||(Kn — Kn)B| = 0.

m,n——+0oo
In the next theorem we show that the iterative solution of system (17) converges to ty,.

Theorem 3 Let n and m large enough, such that m > n, v > 1 and u?, be an iterative solution of (17) and
U be a solution of (16). Then

m

v+1
L o L e | N e g

Proof 4 Let m and n large enough, such that m > n and v > 1, we have

(M — Kp)(ul — ) = [(Km — Kp)(M — Kn)‘lr(Km - Kp)uy, + Ep: [(Km — K,)(M — Kn)_l} qf +f

- [(Km — K,)(\ — K,,,)l} (K — Kn)ttm — Y {(Km — K,)(\ — Kn)l] f—1
Which is equivalent to
utt — = (M — K,) 7! {(Km — K,)(\ — Kn)l} (K — K) (U2, — tm). (24)

Therefore,
™ = leogas) < IO = K) ™0 I — ) (M = K) 7P (Ko — K) ] uiyy = wm cojae - (25)

Using the analogous procedure, one can get

U:n — Um = ()\I - Kn)il {(Km - Kn)()‘l - Kn)l] (Km - Kn)(ulvlr:l - Um) (26)

Then,
[ty = wm looa) < I AL = K) ™ I [(Kn = Kn) M = Ko) TP (Ko — K) |l wpy = wm coja - (27)

m

Taking into account (27) and (25), we obtain

2
H uﬂ'l—um HCO[a,b] < |:| ()‘I_Kn)_l ”H [(Km_Kn)()‘I_Kn)_l]p(Km_Kn) H :| [ Uy_l_um ”Co[ayb] - (28)

m

By recurrence, one can prove the following inequality:
v+1

H u?rjl — Um ”C(’[a,b] < [ ” (AI— Kn)71 ”H [(Km - KH)O‘I_ Kn)il}p(Km - Kn) || ] H u?n — Um HCO[a,b]7

where u0, is the initial solution given by Nystrém method.
Since
Ve>0, 3ng=n: || (A= Kp) ' ||| [(Km — Kn)(M — K,) P (K — Ky || <e <1,

then
v+1

| wpn™ = Um [|coas — 0, when v — +oo0.
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Finally, the next corollary shows that the iterative solution u”! of the system (17) converges to an exact
solution u of equation (12).

Corollary 1 For all m > 1 and v > 1 let u%! be an iterative solution of (17) and let u be an exact solution of
(12), then

lim ( lim |lustt UCO[a,b]> =0. (29)

m——+oo \ v—+00
Proof 5 For all m large enough and v > 1, we have
Hu;’nJrl - UHCO[a,b] < ”u;jl - um”OU[a,b] + [Jtm — UHCO[a,b]'

Thus, using theorem 3 and the convergence of w,, to w, which is clearly proved in [12], we obtain the result.

5. System Performance. To program our generalization represented by (17), we need to reformulate it
to a new form. For this aim, we introduce the residue r

r" =xuy, — Knpu, —f, v>1

and write the following chain of equalities:

(/\I - Kn)u;;jl = [(Kn - Km)()‘l - Kn)_l]p[(Kn - KM)“Zz + f] + Z_:[(Kn - Km)()‘l - Kn)_l]qf +f

= [(Kn— Kn)M = K) 7Pl 4+ (M = K ul] + 3 (K — Ko )M = K) 719 f + f

= [(Kn— Kp)A\ - Kn)_l]p_l[(Kn — Kin) (M — Kn)_lu;fn + (K — Kon)uy,]

+ S[(Kn — Kp)(M = Kp) 7' + f

= F(:flfn = Kun)(A = Kp) 7P (K = K ) (A = Kn) ™Y+ (K — Ko, + ]
+ pf[(Kn — Km)M = Kn) 7' + f

= F(zfl(n — K ALy — Kp) P Y 4 (K — Ko) (M — K) 7l + (M — K)ul,)
+ ij[(Kn — Kn)(M = K) 7' + f

= [(Kn,— Kpn)(M, — K,)"'|]P~2 {(Kn — KM — K,) "1

p—2
© (K KM — )P 4 (K Km>u:n] £ 3 (K — Ko) (M — Ko) 0 + .
qg=1
This is equivalent to

p
(M — K )uit = (A = K )ul, + 17 + ) (K — Kp) (A = K) 719, v > 1

q=1
We set
q
5=\ —K,)™"y [(Kn — KM — Kp,)7Y v,
qg=1
Finally, we get a new system equivalent to system (4), which has the following form for all v > 1

rv =y, — Kpul, — f,
p
& = (A= Kp) ™ (K = Kp)(A = Ky) 719, (30)
q=1

ustl =l + (M — K,) 7Y + 6%,
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In the next part we will demonstrate the principle by which the solution of the system (30) is found. Let
U} be a discretized approximation of u satisfying the system (30). Now determine the following vectors

Up, = (up(to),up(t1), - up, (tm)),
Uy = (up(to),u (t1)7-~-,UZ(tn)),
Fo= (f(to), f(t1), -, f(tm)),
8" = (8"(t0),0"(t1),- -, 0" (tm)),
re. = (rY(to),r"(t1), ..., 7" (tm))

m

and matrices

Apxn = (ti,t;), 0<i<n, 0<j<mn,

Boxm = wjK(t,t;), 0<i<m, 0<j<m,

Coxm = (tirtj), 0<i<n, 0<j<m,

Dyxn = wiK(ti,t;), 0<i<m, 0<j<n,
I,xn = the identity matrix of size n.

Iteration O:

It is necessary to solve the following linear system
(Muxn — Anxn)US = F.

We calculate

0.6) = i{zwj (tirt) (])+F(i)], 0<i<m,
Un(i) = i{zwa (ti ;) ()] 0<i<m

and find a residue

Iteration v > 1:

While err > tolerance
1. We calculate §”. To do this, we follow the next steps:
(a) 0¥ is determined as
q

(;k - (}\Ian - Aan)_lz |:(An><n - Cnxm)()\Ian - Aan)_l(ryl;)%

qg=1
(b) We put z = (M xn — Anxn)_l(r,’;)% and solve the following algebraic system
(M — Anxn)z = (17)7.

n

(¢) Then we compute
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(d) After that we find the following vector M:

P q
Z|: nxn nxm)z:| 9
q=1

p q
Z|: mXxXn ~ mxm)z:| 9
q=1

(e) Solve the next system
(AInxn - Anxn)(;k = Mn><17

ij (tist5)0" () + M1 (i) |, 0 <i <m.

>/\H

2. We set G = (M, xn — Apxn) 17" and solve the system
()\Inxn - Anxn)G = Tuv

Zw] (ti, t;)G(G) +rr (i), 0<i<m.

3. The solution of the v 4 1 order is given as

Uk+1 UI/ +G+61/

4. Finally, we compute the error
err = max |UZT (i) — UZ (1))

oi<m
Return

6. Numerical Tests. To illustrate the efficiency and accuracy of our proposed method, we provide three
examples below. The corresponding errors are defined as

err’ = max [UZT (i) — U (i)] (31)

o<isn

and are shown in tables below.
Now we consider the following equation:
b

Vee (0,8, Au(t /33+t - ds 4 (1), (32)
0

1 1
where f(t) = 2t — ~ arctan(b® +t) + = arctan(¢) and A = 2. In table 1 we present the error values of equation

(32) for different values of b, m, v and p.
Let us turn to another example

b
Ve e (0,8, Au(t) = / “i)e ds + f(t), (33)
0

1 t
where f(t) = e’ + log (;j_i) and A = 1. In table 2 we give the error values of equation (33) for different
et +e

values of b, m, v and p.
Finally, we consider the third equation

a

_ u(s)
Ve [—aa, Au(t) = / ST e e 1) (34)
where f(t) = sin(¢t) and A = 1. In table 3 we present the error values of equation (34) for different values of b,
m, v and p.
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Table 1. The error between the exact and approximate solution of equation (32) for different values of m, v and p

b m P Y
10 20 30 40
1 3.7380e—10 1.0176e—15 1.0176e—15 1.0176e—15
2 2.3882e—11 1.7369e—17 2.2493e—25 2.4989e—32
3 5.3737e—10 2.5513e—17 4.1540e—25 1.1410e—31
4 4.3764e—11 1.3879e—17 6.3256e—26 1.3646e—32
100 600 5 4.6196e—11 5.5512e—17 1.8789e—24 4.3605e—31
6 4.5546e—11 5.5513e—17 3.454e—25 7.8779e—32
7 4.5716e—11 5.5513e—17 3.4569e—25 7.9362e—32
8 4.5617e—11 4.5505e—17 6.3220e—27 1.4929e—33
9 4.5683e—11 5.5512e—17 5.0637e—25 1.1616e—31
10 4.5680e—11 5.5512e—17 1.9209e—24 4.4062e¢—31
1 1.6393e-09 4.0516e-15 6.6174e-24 1.2334e-31
2 1.0585e-10 8.8818e-16 1.1410e-24 1.2334e-31
3 2.3497e-10 2.2204e-16 5.8720e-24 1.5674e-30
4 1.9304¢-10 2.2204e-16 4.2234e-26 8.9581e-33
1000 5000 5 1.9763e-10 2.2204e-16 7.5502¢-24 1.7044e-30
6 1.9294e-10 2.2204e-16 7.2269e-26 1.6033e-32
7 1.9367e-10 2.2204e-16 1.8298e-24 4.0844e-31
8 1.9347e-10 2.2204e-16 1.8962¢-24 4.2284e-31
9 1.9353e-10 2.2204e-16 1.8955e-24 4.2279e-31
10 1.9351e-10 2.2204e-16 1.8530e-24 4.1327e-31

wip?

Error

40

30

Discriization points

50

80
n an

Figure 1. The error between the exact and iterative solution of equation (32) at m = 600
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Table 2. The error between the exact and approximate solution of equation (33) for different values of m, v and p

v
b " b 20 30 40
1 0.0099 0.0018 2.7756e—17
2 0.0374 4.3429e—04 1.5750e—12
3 0.0340 8.9070e—04 4.1038e—12
4 0.0215 4.0771e—04 3.0096e—12
100 1000 5 0.0269 4.7416e—04 3.8055e—12
6 0.0234 2.3254e—04 3.6901e—12
7 0.0251 4.1725e—04 3.7338e—12
8 0.0242 3.9099e—04 3.7257e—12
9 0.0245 4.0201e—04 3.7273e—12
10 0.0244 3.9671e—04 3.7275e—12
1 0.0715 0.0105 5.2112e—-04
2 0.1488 0.0033 2.4375e—05
3 0.1778 0.0045 1.0036e—04
4 0.1103 0.0017 2.2115e—05
500 20000 5 0.1553 0.0029 5.2616e—05
6 0.1277 0.0021 3.3248e—05
7 0.1435 0.0025 4.2169e—05
8 0.1350 0.0024 3.9134e—05
9 0.1367 0.0025 4.1402e—05
10 0.1358 0.0025 4.0665e—05
x10°%

0.8 —

Etror

a0 40

Discrizalion points

Figure 2. The error between the exact and iterative solution of equation (33) at m = 600
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Table 3. The error between the exact and approximate solution of equation (34) for different values of m, v and p

v
¢ " P 20 30 40
1 0 0 0
2 4.1203e-33 6.8363e-41 1.1343e-48
3 1.0313e-32 2.9478e-40 8.4258e-48
4 8.4401e-33 2.1573e-40 5.5142e-48
50 1000 ) 8.8147e-33 2.3069e-40 6.0374e-48
6 8.7334e-33 2.2743e-40 5.9226e-48
7 8.7507e-33 2.2812e-40 5.9468e-48
8 8.7470e-33 2.2797e-40 5.9416e-48
9 8.7478e-33 2.2800e-40 5.9427e-48
10 8.7476e-33 2.2800e-40 5.9425e-48
1 0 0 0
2 7.5177e-32 1.5918e-39 0
3 8.3373e-32 2.0823e-39 3.3707e-47
4 8.4650e-32 2.0815e-39 5.1184e-47
100 2000 5 8.4225e-32 2.0740e-39 5.1071e-47
6 0.1277 8.4316e-32 5.1114e-47
7 8.4299e-32 2.0756e-39 5.1105e-47
8 8.4302e-32 2.0757e-39 5.1106e-47
9 8.4301e-32 2.0756e-39 5.1106e-47
10 8.4302e-32 2.0756e-39 5.1106e-47

Discritization points

Figure 3. The error between the exact and iterative solution of equation (34) at m = 1000
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Tables 1, 2 and 3 show the values of errors between the exact and iterative solution, obtained in the
iterative scheme (17) proposed in this paper, for three equations (32), (33) and (34). We consider the cases with
two different values of b in each table and with two various values of the number of discretization m. Fixing
these values, we vary the iterative number v and p.

For instance, as it follows from table 3, we can stop our iterative procedure at p = 1. Meanwhile, the
minimum of error is achieved at p = 4 in table 2. This means that in this case we can stop our iterative process
at p =4. Or, as can be seen from the table 1, we can go even further up to p = 8.

We conclude that in all cases we have examined, no matter how much we change the value of p, our
proposed method (4) will remain convergent.

Using the Matlab program, we have plotted three figures 1, 2 and 3 demonstrating the solution error of
three equations (32), (33) and (34) correspondingly as a function of the discretized points ¢; and different values
of p from p =1 to p = 10.

7. Conclusion. In this paper we have searched for the best iterative scheme that can generalize two
methods suggested by Atkinson in his work [22]. We have constructed such scheme using the same steps of
Atkinson. Then, we have showed the convergence of the iterative solution u, to the Nystrom solution u,,. We
have proved the theorem on convergence of the iterative solution u!, to the exact solution u in the Banach space
C°[a,b]. We have concluded our manuscript by presenting several numerical examples, whose purpose was to
test the method we have proposed and to clarify the error behavior as a function of different values of p, v, b
and m.
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