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Аннотация: В статье рассматривается методика оценки масштабируемости параллельных ал-
горитмов. Вместо проведения дорогостоящих экспериментов на суперкомпьютерах предлага-
ется использовать специальную имитационную модель. Методика заключается в изучении и
разработке схемы коммуникаций и вычислений исследуемого алгоритма, создании на ее основе
имитационной модели с использованием модели акторов, настройке под конкретную архитекту-
ру суперкомпьютера и исследовании масштабируемости. В статье демонстрируется применение
этой методики к задаче численного моделирования удержания плазмы в открытых магнитных
ловушках. Результаты имитационного моделирования свидетельствуют о 85% эффективности
масштабирования алгоритма при его развертывании на тысячах вычислительных ядер.
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1. Введение. Современные суперкомпьютерные системы демонстрируют высокий уровень парал-
лельной обработки данных, гетерогенность вычислительных компонентов и иерархически распределен-
ную организацию коммуникационных подсистем, что обусловливает значительную сложность разработки
специализированного программного обеспечения и представляет собой актуальную научно-техническую
проблему.

После реализации программного комплекса для решения вычислительно сложных задач ключевой
проблемой становится определение точки насыщения масштабируемости, т.е. установление оптимально-
го количества вычислительных узлов, при котором достигается максимальное ускорение вычислений
(speedup) для заданной архитектуры и входных параметров, причем дальнейшее добавление вычисли-
тельных ресурсов не приводит к значимому росту производительности (закон Амдала).
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Экспериментальное решение данной проблемы требует проведения серии вычислительных экспе-
риментов с вариацией количества задействованных узлов. Однако высокая себестоимость эксплуатации
современных суперкомпьютерных систем, а также лимитированная доступность машинного времени в
большинстве суперкомпьютерных центров существенно ограничивают возможность применения данного
подхода на практике.

В контексте интегрального подхода к разработке параллельных программ, разработанного в
ИВМиМГ СО РАН [1], предлагается решение указанной проблемы посредством применения методов
мультиагентного моделирования. Данный подход позволяет имитировать серию вычислительных экспе-
риментов, существенно сокращая требования к реальным ресурсам и временным затратам, при этом
обеспечивая оценку масштабируемости исследуемых алгоритмов для современных и перспективных су-
перкомпьютерных архитектур.

Можно выделить несколько основных направлений исследований в данной области:
• Экстрамасштабное моделирование (Extreme-Scale simulation) [2]. Основной фокус направлен на мо-

делирование систем с миллионами ядер и экзабайтами данных. Разрабатываются легковесные мо-
дели, способные предсказывать поведение алгоритмов на таких масштабах, не требуя фактического
развертывания.

• Исследование энергоэффективности [3]. Наряду с оценкой производительности, имитационные мо-
дели используются для анализа энергопотребления параллельных алгоритмов. Это позволяет опти-
мизировать алгоритмы не только по скорости, но и по стоимости вычислений, что критически важно
для дата-центров и суперкомпьютеров.

• Гетерогенные и гибридные архитектуры [4]. Современные модели должны учитывать работу алго-
ритмов в средах, где сочетаются CPU, GPU, Phi и другие ускорители.

• Интеграция с машинным обучением [5]. Появляются работы, где методы ML используются внутри
симуляторов для предсказания поведения системы в неопределенных условиях или для автомати-
ческой оптимизации параметров алгоритма в ходе моделирования. Особое распространение получи-
ли специализированные платформы для HPC, такие как SimGrid [6] и SST (Structural Simulation
Toolkit)[7]. Эти инструменты предоставляют абстракции для моделирования вычислительных узлов
и сетевой инфраструктуры, позволяя исследователям сосредоточиться только на логике алгоритма.

Рис. 1. Модель акторов для имитации вычислений

Fig. 1. Actor model for the computation simulation

В данной работе представлен подход к исследо-
ванию параллельных алгоритмов на основе модели
акторов.

Первоначально моделирование осуществлялось
с использованием системы AGNES [8], однако выяв-
ленные ограничения данной платформы обусловили
необходимость перехода к модели акторов для ими-
тации вычислений (рис. 1) [9]. По аналогии с пара-
дигмой объектно-ориентированного программирова-
ния, где каждый примитив рассматривается как объ-
ект, модель акторов выделяет в качестве универсаль-
ной сущности понятие “актора”. Актор представляет
собой автономный вычислительный компонент, кото-
рый, получив сообщение, может одновременно: отпра-
вить конечное число сообщений другим акторам, со-
здать конечное число новых акторов, выбрать поведе-
ние, которое будет использоваться при обработке сле-
дующего полученного сообщения. Фактически, каж-
дая вычислительная функция программы становится
“черным ящиком”, принимающим входные данные в
виде сообщений и выдающим результат также в виде
сообщений. На рис. 1 схематично представлен такой
подход. Время обработки данных разными “черными ящиками” и времена пересылок сообщений могут
быть как синтетическими, так и извлекаемыми из данных по реальным запускам исследуемой программы
на системах с различным количеством вычислительных ядер.
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Как показывает сравнительный анализ, данная модель обеспечивает:
• сокращение коммуникационных накладных расходов между агентами;
• повышенную эффективность при масштабировании;
• улучшенные показатели отказоустойчивости.

Результаты экспериментальной верификации подтверждают, что функциональный язык программирова-
ния Erlang демонстрирует оптимальные показатели по следующим критериям:

• простота реализации моделей;
• эффективность масштабирования;
• устойчивость к отказам.

Благодаря этому он представляет собой предпочтительный инструмент для задач имитационного моде-
лирования масштабируемости алгоритмов [10, 11].

В данной работе будет проиллюстрировано применение такого подхода к исследованию масштаби-
руемости алгоритма численного моделирования удержания плазмы в магнитной ловушке [12, 13].
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Рис. 2. Базовая схемы коммуникаций параллельного
вычислительного процесса

Fig. 2. Basic communication scheme of the parallel
computational process

2. Общая схема исследования парал-
лельного алгоритма. В параллельных вычисле-
ниях программа представляет собой набор одно-
временно работающих потоков (нитей), распреде-
ленных по отдельным вычислительным узлам. Эти
потоки обмениваются данными через систему сооб-
щений. Основными параметрами, определяющими
работу каждой нити, являются длительность вы-
полнения вычислений и время, затрачиваемое на
передачу данных другим узлам. Для прогнозирова-
ния работы программы на суперкомпьютере стро-
ится специальная модель, которая включает созда-
ние схемы коммуникации между всеми нитями про-
цесса (как показано на рис. 2) и разделение работы
каждой нити на фазы вычислений и фазы обмена
данными. Каждая нить представлена как последо-
вательность вычислительных и коммуникационных
операций. Все взаимодействия между нитями фор-
мализованы и могут быть проанализированы. Мо-
дель позволяет оценить временные характеристики
выполнения программы до ее реального запуска на
суперкомпьютере. Такой подход дает возможность
предсказать поведение параллельной программы и
оптимизировать ее работу для конкретной вычис-
лительной архитектуры.

Ключевой характеристикой эффективности
вычислительного процесса при его исполнении на
высокопроизводительных суперкомпьютерах явля-
ется масштабируемость. Здесь следует отметить,
что для разных вычислительных алгоритмов мо-
жет быть важен разный показатель масштабиру-
емости. Например, методы статистического моде-
лирования [14, 15] , как правило, демонстрируют
слабую масштабируемость, т.е. уменьшение време-
ни исполнения при увеличении вычислительных уз-
лов, а сеточные методы численного моделирова-
ния [16–18] — сильную масштабируемость, т.е. неиз-
менность времени расчета алгоритма при увеличении расчетной области пропорционально количеству
вычислительных узлов. В исследовании рассматривается исключительно межузловая масштабируемость,
поскольку количество ядер вычислительных элементов зафиксировано и намного меньше, чем потенци-
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альное число вычислительных узлов высокопроизводительных суперкомпьютеров. Таким образом, все
локальные операции внутри отдельного вычислительного узла считаются фиксированной величиной, не
оказывающей существенного влияния на общую структуру расчета. Процесс исследования масштабируе-
мости параллельных алгоритмов можно условно разбить на несколько этапов:

• Создание упрощенной модели программы. На данном этапе происходит анализ того, как разные
части программы (потоки) работают и взаимодействуют между собой. Затем группируются похожие
потоки, которые выполняют одинаковые вычисления. Для каждой группы создается виртуальный
“шаблон” (актор), который будет имитировать ее поведение.

• Настройка виртуальных копий потоков. Каждый актор получает следующие параметры: время вы-
числений, объем передаваемых данных и скорость обмена сообщениями.

• Запуск имитации. Акторы определяют и устанавливают адресатов для взаимодействия, а также
выполняют расчеты, обмениваясь сообщениями в соответствии с заданной схемой вычислений. Этот
процесс продолжается до тех пор, пока не будет достигнуто условие останова (например, выполнится
заданное число циклов вычислений).

• Анализ результатов. На данном этапе происходит исследование полученных показателей, таких как
общее время работы вычислительного процесса, время выполнения каждого актора, количество ите-
раций цикла вычислений, совершенных каждым актором, задержки при передаче данных между
акторами. Описанный метод позволяет заранее узнать, как программа поведет себя на реальном
суперкомпьютере, помогает найти “узкие места” в работе программы, сокращает временные и фи-
нансовые издержки (не нужно арендовать реальный суперкомпьютер для тестов), а также особенно
полезен для разработки алгоритмов для суперкомпьютеров следующего поколения, которые еще
находятся в стадии проектирования. Предлагаемый метод исследования вычислительных процессов
уже был успешно использован при изучении возможности масштабирования нескольких вычисли-
тельных алгоритмов на большое число вычислительных ядер [19, 20].

3. Исследование масштабируемости параллельного алгоритма динамики плазмы.

3.1. Описание схемы вычислений для исследуемого алгоритма. Исходная физическая зада-
ча по исследованию динамики плазмы в магнитной ловушке описывается трехмерной гибридной моделью,
где ионная компонента представляет собой набор частиц, а электронная — жидкость. В область ловушки
с постоянным магнитным полем 𝐵0 и фоновой плазмой плотности 𝑛0 инжектируются частицы/ Самосо-
гласованное движение частиц в электромагнитных полях ловушки описывается кинетическим уравнением
Власова для ионов:

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑟
+

𝐹

𝑚

𝜕𝑓

𝜕𝑣
= 0,

где сила 𝐹 учитывает трение между электронами и ионами. При этом плотности и скорости ионов опре-
деляются как интегралы

𝑛𝑖(𝑟, 𝑡) =

∫︁
𝑓(𝑟,𝑣, 𝑡)𝑑𝑣, 𝑉𝑖(𝑟, 𝑡) =

1

𝑛𝑖

∫︁
𝑣𝑓(𝑟,𝑣, 𝑡)𝑑𝑣.

Плазма считается квазинейтральной 𝑛𝑒 = 𝑛𝑖 = 𝑛, токи рассчитываются как 𝑗 = 𝑒(𝑛𝑖𝑉𝑖 − 𝑛𝑒𝑉𝑒). Для
описания электронов используются уравнения магнитной гидродинамики в безмассовом приближении:

𝑒𝐸 − 𝑒

𝑐
𝑉𝑒 ×𝐵 − ∇𝑝𝑒

𝑛𝑒
+

𝑚𝑒

𝜏𝑒𝑖
(𝑉𝑖 − 𝑉𝑒) = 0,

где 𝑝𝑒 = 𝑛𝑒𝑇𝑒 — давление электронной компоненты, 𝑇𝑒 — ее температура. При этом температура 𝑇𝑒

удовлетворяет уравнению:

𝑛𝑒

(︂
𝜕𝑇𝑒

𝜕𝑡
+ 𝑉𝑒∇𝑇𝑒

)︂
= (𝛾 − 1) (𝑄𝑒 − div 𝑞𝑒 − 𝑝𝑒 div𝑉𝑒) ,

где 𝑄𝑒 — джоулев нагрев, 𝑞𝑒 — плотность теплового потока, 𝛾 = 5/3 — показатель адиабаты. Электро-
магнитные поля описываются уравнениями Максвелла с малыми токами смещения:

∇×𝐵 =
4𝜋

𝑐
𝑗, ∇×𝐸 = −1

𝑐

𝜕𝐵

𝜕𝑡
.
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В начальный момент времени 𝐵 = (0, 0, 𝐵0𝑧 ), 𝐸 = 0, 𝑇𝑖 = 𝑇0. Задача решается с помощью метода
“частиц-в-ячейке” (PIC-метод). На рис. 3 представлено общее описание PIC-метода, которое подробно
изложено в [21–23].

В параллельной реализации численной модели удержания плазмы в открытых магнитных ловушках
используется гибридная декомпозиция расчетной области [24]. Расчетная область делится равномерно на
подобласти, причем за каждую подобласть отвечает отдельная группа процессов. Частицы в подобласти
распределяются равномерно между процессами группы. Передача граничных узлов для подобласти узлов
сетки происходит между процессами основной группы (рис. 4). Частицы могут быть перенаправлены в
любой процесс из соседней группы.

Движение частиц
Particle motion
Ньютон–Лоренц
Newton–Lorentz

Добавление внешних сил
Addition of external forces

Поглощение/Излучение
Absorption/Emission

Накопление тока/заряда
Accumulation of current/charge

облака частиц
particle clouds

Сложение сил
Summation of forces

Фильтрация
Filtration

по полям/по потенциалам
by fields/by potentials

Фильтрация
Filtration

заряд/ток
charge/currentРасчет поля

Calculating the field
Пуассон–Максвелл
Poisson–Maxwell

Время
Time

Рис. 3. Общее описание метода “частиц-в-ячейках”: a) пример перелета частиц между ячейками сетки;
b) общая схема метода

Fig. 3. General description of the particle-in-cell method: a) example of particle movement between grid cells;
b) general scheme of the method

1 MAIN 2 MAIN 3 MAIN 4 MAIN 5 MAIN

1 SUB’S 2 SUB’S 3 SUB’S 4 SUB’S 5 SUB’S

Рис. 4. Декомпозиция расчетной области в исследуемом алгоритме
удержания плазмы в открытых магнитных ловушках

Fig. 4. Domain decomposition in the studied algorithm of the plasma confinement
in open magnetic traps
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Каждый этап вычислительного цикла включает в себя лагранжеву стадию для расчета скоростей и
координат частиц и эйлерову стадию для вычисления на пространственной сетке. В начале каждого шага
вычислительного цикла основной процесс распределяет по группе значения электрического и магнитного
поля в подобласти, используя процедуру MPI BCAST. Чтобы перейти к лагранжевой стадии, мы приме-
няем билинейную интерполяцию, находим в каждом процессе силу Лоренца, действующую на частицу
в ее местоположении, и вычисляем скорости и координаты частиц. Если частица вылетает за пределы
подобласти, то ее физические характеристики отправляются в один из процессов соседней группы. Ис-
пользование локального ранжирования позволяет равномерно распределить частицы по процессам при
отправке. После этого каждый процесс вычисляет средние скорости ионов в ячейке и плотность, и мы пере-
ходим к эйлерову этапу. Основные процессы группы собирают данные о группе, используя MPI REDUCE,
а затем обмениваются граничными данными. Далее вычисляются скорости электронов, параметры элек-
трического поля, магнитного поля и температуры. После решения каждого уравнения на эйлеровом этапе
происходит обмен граничными узлами сетки между соседними процессорами основной группы. Исходя из
описания параллельной реализации исследуемого алгоритма была составлена схема вычислений (рис. 5),
на основе которой подготовлена имитационная модель для исследования его масштабируемости.

X Main
Face transfers

Calculating magnetic field

Particle injection

BCAST

REDUCE (RECV)P
ar

ti
cl

e
m

ot
io

n

Density calculation

Face exchange

Calculating magnetic field

Face transfers

Face transfers

Velocity calculation

Face transfers

Face transfers

Current calculation

Face transfers

Face transfers

Temperature calculation

Face transfers

Face transfers

𝑥− 1
SUB’s

𝑥+ 1
SUB’s

X Sub

BCAST (RECV)

Buffer preparation

Particle exchange

Processing
outgoing/incoming particles

REDUCE

Calculations

Рис. 5. Схема коммуникаций между вычислительными нитями исследуемого параллельного алгоритма

Fig. 5. Communication scheme between computational threads of the studied parallel algorithm
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3.2. Исследование производительности алгоритма и оптимизация. Для того, чтобы прове-
сти исследование масштабируемости с использованием имитационного моделирования, необходимо на-
брать статистические данные по работе программы для различного количества MPI потоков. В табл. 1
показаны данные, собираемые для имитационного моделирования, где 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝑁𝑧loc — параметры

Таблица 1. Собираемые данные для имитационного моделирования

Table 1. Gathered data for the simulation modeling

Процедура
Procedure

Пересылки или другие процедуры
Transfers or other subprocedures

Размер пересылки
Transfer size

1. Вычисление магнитного
поля (часть 1)

Пересылки граней MPI SEND, MPI RECV 2×𝑁𝑥 ×𝑁𝑦 влево

1. Мagnetic field
calculation (part 1)

Face transfers MPI SEND, MPI RECV 2×𝑁𝑥 ×𝑁𝑦 to the left

2. Инжекция
2. Injection

3. Движение частиц
3. Particle motion

Передача данных полей MPI BCAST
Field data transfer MPI BCAST

3×𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧loc
3×𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧loc
3×𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧loc

Подготовка пересылок: частицы, вылетающие из
текущей области, попадают в буфер
Transfer preparation: particles flying out of the
current domain fall into the buffer

Пересылки частиц MPI SEND, MPI RECV
Particle transfers MPI SEND, MPI RECV

Разный
Different size

Перераспределение частиц по ячейкам: включает
перевыделение памяти, заполнение пустых элемен-
тов массива частиц, вылетевших из текущей обла-
сти, и добавление прилетевших частиц в эту об-
ласть
Redistributing particles among cells: includes
memory reallocation, filling empty elements of the
particle array that flew out of the current domain
and adding incoming particles to this domain

4. Плотности
4. Densities

Сбор плотностей MPI REDUCE
Density gathering MPI REDUCE

3×𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧𝑙𝑜𝑐
3×𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧loc
3×𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧loc

Пересылка граней MPI SEND, MPI RECV
Face transfers MPI SEND, MPI RECV

6×𝑁𝑥×𝑁𝑦×𝑁𝑧loc to the left
6×𝑁𝑥×𝑁𝑦×𝑁𝑧loc to the right
6×𝑁𝑥×𝑁𝑦×𝑁𝑧loc to the left
6×𝑁𝑥×𝑁𝑦×𝑁𝑧loc to the right
2×𝑁𝑥×𝑁𝑦×𝑁𝑧loc to the left
2×𝑁𝑥×𝑁𝑦×𝑁𝑧loc to the right

5. Вычисление магнитного
поля (часть 2)

5. Мagnetic field
calculation (part 2)

6. Токи
6. Currents

Пересылки граней MPI SEND, MPI RECV
Face transfers MPI SEND, MPI RECV

2×𝑁𝑥 ×𝑁𝑦 to the left
2×𝑁𝑥 ×𝑁𝑦 to the right

7. Скорости электронов
7. Electron velocities

Пересылки граней 𝐸𝑧 MPI SEND, MPI RECV
Face transfers 𝐸𝑧 MPI SEND, MPI RECV

2×𝑁𝑥 ×𝑁𝑦 to the left
2×𝑁𝑥 ×𝑁𝑦 to the right

8. Электрическое поле
8. Electric field

Пересылки граней 𝐸𝑥, 𝐸𝑦 MPI SEND, MPI RECV
Face transfers 𝐸𝑥, 𝐸𝑦 MPI SEND, MPI RECV

2×𝑁𝑥 ×𝑁𝑦 to the right
2×𝑁𝑥 ×𝑁𝑦 to the right
2×𝑁𝑥 ×𝑁𝑦 to the left
2×𝑁𝑥 ×𝑁𝑦 to the left

Пересылки граней 𝐸𝑧 MPI SEND, MPI RECV
Face transfers 𝐸𝑧 MPI SEND, MPI RECV

𝑁𝑥 ×𝑁𝑦 to the left
𝑁𝑥 ×𝑁𝑦 to the right

9. Температура
9. Temperature

Пересылки граней MPI SEND, MPI RECV
Face transfers MPI SEND, MPI RECV

𝑁𝑥 ×𝑁𝑦 to the left
𝑁𝑥 ×𝑁𝑦 to the right
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групп данных, соответствующие размерам сетки всей области в направлениях 𝑥, 𝑦, 𝑧 и локальному раз-
меру сетки по направлению 𝑧 для каждого процессора. Пересылки от 𝑖-ого процессора к (𝑖 + 1)-му (то
есть соседу справа) будем называть пересылками вправо, от 𝑖-го процессора к (𝑖− 1)-му — пересылками
влево.

Чтобы выявить источник снижения производительности исследуемого алгоритма, мы анализируем
различные показатели производительности программного кода, связанные с конкретной аппаратной ар-
хитектурой вычислительного комплекса. В нашем случае мы собирали данные с 8 до 32 MPI потоков
для двухпроцессорного узла с 16 ядерными Intel Xeon 2697Av4 кластера НКС-1П ЦКП ССКЦ СО РАН.
Значения задержек для разных типов интерконнектов известны из предыдущих расчетов. Конкретно для
нашего исследования мы использовали их усредненные значения. Анализ производительности и последу-
ющая оптимизация вычислительного кода проводилась с использованием программы Intel VTune [25] из
пакета IntelOneAPI 2024. Это свободно распространяемый пакет программ, который включает в себя как
полный набор самых современных компиляторов, так и широкий круг средств отладки и оптимизации
программ. Intel VTune анализирует производительность программы в части эффективности использова-
ния различных блоков процессора, подсистемы памяти и параллельной реализации кода.

На рис. 6 показана метрика использования микроархитектуры процессора. Показатель использова-
ния микроархитектуры — это ключевая метрика, позволяющая оценить (в %), насколько эффективно
код выполняется на текущей микроархитектуре. На использование микроархитектуры могут повлиять
операции с памятью, характеризующиеся большой задержкой, операции с плавающей запятой или SIMD,
неисполненные инструкции из-за неправильного прогнозирования ветвей. На рис. 7 показана метрика
ограничения производительности кода, вызванная работой подсистемы оперативной памяти. Эта метрика
показывает, как проблемы подсистемы памяти влияют на производительность. Memory Bound определя-
ет долю слотов, где конвейер может быть остановлен из-за инструкций по загрузке или сохранения по
требованию. В нашем случае этот показатель превышает 20%. Это означает, что из-за обращений к па-
мяти, процессор простаивает в ожидании загрузки или сохранения данных значительную часть времени.
При этом нам удалось достичь неплохих показателей по использованию кэшей всех трех уровней за счет
выравнивания данных и эффективного размера блоков данных, обрабатываемых за один такт процессора

Рис. 6. Использование микроархитектуры

Fig. 6. Microarchitecture usage

Рис. 7. Ограничения, связанные с подсистемой памяти исследуемого параллельного алгоритма

Fig. 7. Memory subsystem limitations of the studied parallel algorithm
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в случае применения SIMD инструкций. Что касается использования микроархитектуры, то анализ по-
казывает, что задержки, связанные с использованием памяти, дают в целом невысокую эффективность
использования вычислительных ядер. Это типичные результаты для кодов, связанных с решением данного
класса задач. Доля ошибок, обусловленных неэффективным использованием инструкций вычислитель-
ных ядер, составляет 34.6% при целевом показателе 10%. Это указывает на значительный потенциал для
оптимизации кода.

Результаты первоначальных тестов производительности были на 30% ниже, чем представленные на
рис. 6, 7. Мы подобрали оптимальные коэффициенты, приведенные в табл. 1, чтобы данные для вычис-
лений эффективно использовали кэш-память процессора, а также разделили арифметические операции,
чтобы облегчить векторизацию кода компилятору Intel Fortran Compiler. К сожалению, в нашем распо-
ряжении отсутствуют высокопроизводительные вычислительные системы, насчитывающие больше 50000
вычислительных ядер. В этом случае для исследования масштабируемости программы можно использо-
вать имитационное моделирование, позволяющее представить программный код в виде “черных ящиков”.
Опираясь на данные о задержках выполнения различных частей программы, вызванных работой памяти
и сетевых устройств, мы можем построить модель ее исполнения на вычислительных системах с потен-
циально “бесконечным” количеством ядер.
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Рис. 8. Масштабируемость исследуемого алгоритма

Fig. 8. Scalability of the studied algorithm

3.3. Исследование масштабируемости па-
раллельного алгоритма. Для имитации исполне-
ния алгоритма численного моделирования динамики
плазмы в открытых магнитных ловушках реализо-
ваны классы акторов PMain и PSub. Акторы клас-
са PMain имитируют выполнение главного процесса
группы: они осуществляют рассылку и сбор данных
со всех процессов группы, а также обменивается дан-
ными с соседними акторами того же класса. Акто-
ры класса PSub имитируют движение частиц между
группами и проводят остальные вычисления в груп-
пе. Задержки при передаче сообщений между акто-
рами в итоге имитируют соответствующие задержки
при передаче сообщений в реальной вычислительной
системе. Модель исполнения алгоритма выполняет за-
ранее заданное количество вычислительных циклов.
Временные характеристики выполнения всех этапов
вычислительных циклов получены на основе резуль-
татов запуска реального вычислительного алгоритма
на кластере НКС-1П ЦКП ССКЦ СО РАН. Для демонстрации масштабируемости исследуемого алгорит-
ма были произведены расчеты для различного числа вычислительных узлов (более 106 вычислительных
ядер). Исследована слабая масштабируемость вычислительного алгоритма — изменение времени выпол-
нения задачи при увеличении параллельных процессов (вычислительных ядер) при условии сохранения
фиксированной вычислительной нагрузки в пересчете на один процесс. Результаты данных исследований
приведены на рис. 8. Для идеального параллельного алгоритма время исполнения при этом должно ме-
няться незначительно. Однако, стремительный рост нагрузки на систему обмена сообщениями приводит
к тому, что после достижения определенного количества вычислительных ядер их дальнейшее увели-
чение приводит к неоправданно высоким затратам вычислительных и сетевых ресурсов по сравнению
с достигаемым выигрышем во времени. Поиск такого количества вычислительных ресурсов с помощью
имитационного моделирования существенно снижает нагрузку как на разработчика вычислительных ал-
горитмов, так и на вычислительную инфраструктуру.

Исходя из рис. 8 можно сделать вывод, что использование в схеме вычислений главного процесса
группы, который занимается рассылкой и агрегацией данных группы и обменом данными с соседними
областями, существенно снижает издержки на коммуникации. Также можно отметить, что алгоритм при
исполнении на большем числе вычислительных ядер демонстрирует высокую масштабируемость, то есть
способность эффективно решать задачи значительно большего размера.

4. Заключение. В рамках интегрального подхода к параллельному программированию разрабо-
тана инновационная методика анализа масштабируемости, основанная на мультиагентной имитацион-
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ной модели, принципах дискретного событийного моделирования и технологиях прогнозной аналитики.
Предлагаемая методика позволяет осуществлять предиктивный анализ масштабируемости алгоритмов,
минимизировать потребности в реальных вычислительных ресурсах, т.е. снижать материальные затраты
на этапе проектирования и оценивать перспективы использования алгоритмов в экзафлопсных систе-
мах. Данная методика расширяет инструментарий HPC-аналитики и позволяет избегать узких мест на
этапе проектирования. Исследован алгоритм численного моделирования динамики плазмы в аксиально-
симметричных открытых магнитных ловушках. Особенностью данного алгоритма является локальность
вычислительных операций, отсутствие глобальных коммуникационных операций и оптимизированная схе-
ма обмена данными. Исследована сильная масштабируемость данного алгоритма на конфигурациях до 1
млн ядер. При решении задач физики плазмы, которые эффективно загружают данными до 100 тысяч
ядер, достигается сохранение эффективности на уровне 85%.
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