УДК 590.6

РЕШЕНИЕ ОБРАТНОЙ ЗАДАЧИ САМОДИФФУЗИИ В СЛОЖНЫХ ПОЛИМЕРНЫХ СИСТЕМАХ ПРИ НАЛИЧИИ АПРИОРНОЙ ИНФОРМАЦИИ

Д. В. Зотьев¹, С. М. Усманов², Э. Д. Шакирьянов², А. Г. Ягола¹

В работе предложен метод восстановления спектра коэффициентов самодиффузии, который позволяет получать информацию о молекулярной подвижности в сложных полимерных системах. Предложен алгоритм решения соответствующей обратной задачи, использующий априорную информацию и основанный на физических ограничениях на искомую функцию.

Ключевые слова: метод восстановления спектра, самодиффузия, обратные задачи, полимерные системы, краевые задачи, термодинамическое равновесие, интегральные уравнения.

1. Введение. Трансляционная тепловая подвижность молекул при термодинамическом равновесии системы самодиффузия является информативной характеристикой структуры и состояния вещества. Среди ряда известных методов измерения коэффициентов самодиффузии D приоритетным считается ЯМР с импульсным градиентом магнитного поля [1]. Многочисленные измерения величины D показали [1], что расплавы и растворы полимеров, как правило, характеризуются неэкспоненциальной формой амплитуды сигнала свободной индукции ЯМР [1, 2]. Последнее, в свою очередь, объясняется наличием целого спектра коэффициентов самодиффузии z(D). Причин появления спектров коэффициентов самодиффузии зацеплений между молекулами [1], степень концентрации полимера в растворителе [1], особенности молекулярного движения в сложных многофазных системах и т.д.

В связи с этим расчет дискретных значений спектра z(D) позволяет получать непосредственную информацию о молекулярной подвижности в сложных полимерных системах. Знание действительного вида спектра z(D) позволяет не только качественно и количественно охарактеризовать движение молекул вещества, но и выявить возможное наличие нескольких механизмов молекулярной подвижности. Поэтому измерение коэффициентов самодиффузии представляет интерес для физики жидкостей как одна из возможностей экспериментальной проверки различных моделей жидкого состояния.

2. Постановка задачи. Для измерения *D* обычно используют постоянный градиент внешнего магнитного поля

$$\frac{M(2\tau)}{M_0} = \exp\left(-\frac{2\tau}{T_2} - \frac{2}{3}\gamma^2 g^2 \tau^3 D\right)$$
(1)

или же для расширения измеряемых значений D при ограниченном движении (жидкости в пористых соединениях, коллоиды, адсорбированные на поверхности твердого тела, и т. д.) применяют метод спинового эха с импульсным градиентом магнитного поля

$$\frac{A(g^2)}{A(0)} = \exp\left(-\gamma^2 \delta^2 t_d \, g^2 D\right),\tag{2}$$

где $M(2\tau)$ и M(0) — намагниченность в момент времени 2τ и в начальный момент времени, T_2 — время спин-спиновой релаксации, γ — гиромагнитное отношение резонирующего ядра, g — амплитуда градиента магнитного поля, D — коэффициент самодиффузии, $A(g^2)$ и A(0) — амплитуда сигнала в присутствии и отсутствии градиента магнитного поля с длительностью δ , $t_d = \Delta - \frac{1}{3}\delta$ — время диффузии, Δ — интервал между импульсами градиента.

Если времена спин-спиновой релаксации и коэффициенты самодиффузии различаются, то, например, затухание поперечной намагниченности описывается выражением

$$\frac{M(2\tau)}{M_0} = \sum_i p_i \exp\left(-\frac{2\tau}{T_{2i}} - \frac{2}{3}\gamma^2 g^2 \tau^3 D_i\right),$$

¹ Московский государственный университет им. М.В. Ломоносова, физический факультет, Воробьевы горы, 119992, Москва; e-mail: zotyev@mail.ru; yagola@inverse.phys.msu.su

 $^{^2}$ Бирский государственный педагогический университет, ул. Интернациональная, 10, 452453, г. Бирск; e-mail: eddy_dan@yahoo.com

[©] Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

где p_i — интенсивность вклада i-й компоненты в общем сигнале.

В предельном случае соотношения (1) и (2) примут вид

$$\frac{M(2\tau)}{M_0} = \int_{D_1}^{D_2} \exp\left(-\frac{2\tau}{T_2} - \frac{2}{3}\gamma^2 g^2 \tau^3 D\right) z(D) \, dD,$$
$$\frac{A(g^2)}{A(0)} = \int_{D_1}^{D_2} \exp\left(-\gamma^2 \delta^2 t_d \, g^2 D\right) z(D) \, dD. \tag{3}$$

Здесь будет рассмотрено только уравнение (3). Уравнение (3) представляет собой интегральное уравнение Фредгольма 1-го рода и является типичной некорректно поставленной задачей. Поэтому для его решения требуются специальные методы. В данной работе предлагается подход к решению обратной задачи самодиффузии, основанный на использовании априорной информации о поведении искомого решения на области определения.

Подынтегральная функция в (3) определена в широких пределах измерения коэффициента D (коэффициент самодиффузии может изменяться в пределах от 10^{-16} до 10^{-4} м²/с). Поэтому ввиду ряда причин, описанных в [3], предлагается решение данной задачи рассматривать в масштабе логарифмических координат [3, 4], т.е. производится замена переменной $D = D_0 \exp{(\xi)}$. Квадрат градиента магнитного поля также изменяется в широких пределах (в рассматриваемом случае $g^2 \in [0, 4096]$ Tл²/м²). Поэтому вместо переменной g^2 также вводится новая переменная $\eta = g^2/4096$. В результате уравнение (3) приво-

дится к виду
$$u(\eta) = \int_{\xi_1}^{\xi_2} \overline{K}(\xi, \eta) \overline{z}(\xi) d\xi$$
, где $u(\eta) = \frac{A(4096g^2)}{A(0)}, \ \overline{z}(\xi) = z \left(D_0 \exp(\xi) \right) D_0 \exp(\xi), \ \xi_1 = \ln\left(\frac{D_1}{D_0}\right), \ \xi_2 = \ln\left(\frac{D_2}{D_0}\right), \ \overline{K}(\xi, \eta) = \exp\left(-\gamma^2 \delta^2 t_d D_0 \exp\left(\xi\right) 4096\eta\right).$

В данной работе предложен подход к определению функции распределения коэффициентов самодиффузии на основе характерного вида кривой $\overline{z}(\xi)$ (рис. 1). Предполагается, что искомая функция распределения кусочно-выпукла с двумя точками перегиба и неотрицательна на всей области определения. Обозначим множество таких функций через Z. Как показано в [6], использование подобной информации позволяет выделить компактное множество в L_2 , которому принадлежит точное решение.

> Математически задача сводится к минимизации квадратичного функционала на множестве Z:

$$\Psi[\overline{z}] = \int_{\xi_1}^{\xi_2} \left(\int_{\eta_1}^{\eta_2} \overline{K}(\xi, \eta) \overline{z}(\xi) \, d\xi - u(\eta) \right)^2 d\eta.$$
(4)

Для численного решения задачи минимизации производится конечноразностная аппроксимация функционала (4). По переменным ξ и η вводятся равномерные сетки из Nи M узлов соответственно. Интегралы аппроксимируются по формуле прямоугольников. В результате функционал (4) принимает вид

$$\overline{\Psi}[\overline{z}] = \sum_{j=1}^{M} \left(\sum_{i=1}^{N} \overline{K}_{ij} \overline{z}_i h_{\xi} - u_j \right)^2 h_{\eta}.$$
 (5)

0

Здесь h_{ξ} и h_{η} — шаги сеток по переменным ξ и η соответственно.

Записывая условия неотрицательности и кусочной выпуклости искомого решения в узлах сетки, получим, что множество Z переходит во множество \overline{Z} . Здесь i_1 и i_2 — номера точек перегиба:

$$\overline{Z} = \begin{cases} z_{i+1} - 2z_i + z_{i-1} \ge 0, & i = 2, \dots, i_1, \\ z_{i+1} - 2z_i + z_{i-1} \le 0, & i = i_1, \dots, i_2, \\ z_{i+1} - 2z_i + z_{i-1} \ge 0, & i = i_2, \dots, N-1, \\ z_i \ge 0, & i = 1, \dots, N. \end{cases}$$

Задача минимизации функционала (5) решалась путем замены переменных и переходом ко множеству векторов с неотрицательными компонентами, а далее использовался метод проекции сопряженных градиентов. Положение точек перегиба определялось перебором [5].

3. Расчет для модельной задачи. С целью проверки правильности работы рассмотренного алгоритма были проведены модельные расчеты. В качестве точного решения использовалась функция $\overline{z}(\xi) = \frac{1}{2} \exp\left(-0.7(\xi+2)^2\right)$, а в качестве параметров задачи использовались значения, соответствующие реальным условиям эксперимента: $\gamma^2 = 1.81 \times 10^{14} \, \Gamma \mu^2 / T \pi^2$, $\delta^2 t_d = 1125 \times 10^{-15} \, c^3$, $\xi \in [-7.4; 0]$. При таких значениях параметров модельная функция имеет две точки перегиба: $\xi_{i_1} = -2.845$ и $\xi_{i_2} = -1.155$. Рассматривалось 30 "экспериментальных точек". На рис. 2 изображено точное и приближенное решения. Минимизация прекращалась при достижении заданного количества итераций либо когда градиент функционала становился меньше заданной величины.

Рис. 2. Функция распределения модельной задачи

Рис. 3. Диффузионные затухания в водных растворах сахарозы

Точки перегиба, полученные перебором, оказались равными $\xi_{i_1}^{ap} = -2.71$ и $\xi_{i_2}^{ap} = -1.23$. Значение функционала на найденном приближенном решении равно 9.8×10^{-13} .

4. Обработка экспериментальных данных. Для расчета функции распределения коэффициентов самодиффузии $\overline{z}(\xi)$ были использованы экспериментальные данные диффузионных затуханий для вод-

ного раствора сахарозы [2] (на рис. 3 изображены кривые диффузионных затуханий водных растворов сахарозы с концентрацией 35%, полученные при разных временах диффузии t_d). Авторами в диффузионных экспериментах ЯМР с ИГМП регистрировались обменные процессы (протонный и молекулярный обмены) в водных растворах сахаридов, обусловленные наличием водородосодержащих атомных групп, а также явлениями гидратации и ассоциацией молекул.

Функция распределения восстанавливалась по 30 экспериментальным значениям правой части (3). Значения параметров задачи такие же, как и в модельной задаче. На рис. 4 и 5 представлены рассчитанные функции распределения для различных времен диффузии. Во всех случаях значение функционала невязки на найденном приближенном решении составило $\approx 2 \times 10^{-7}$.

5. Выводы. Предложен подход к определению функции распределения коэффициентов самодиффузии *z*(ξ). Это обобщает известные методы решения данной задачи.

Модельные расчеты и результаты обработки экспериментальных данных подтверждают эффективность предложенного алгоритма.

Работа поддержана грантом РФФИ-Агидель (проект № 05-01-97928-р).

СПИСОК ЛИТЕРАТУРЫ

- 1. Маклаков А.И., Скирда В.Д., Фаткуллин Н.Ф. Самодиффузия в растворах и расплавах полимеров. Казань: Изд-во КГУ, 1987.
- 2. Севрюгин В.А., Скирда В.Д., Скирда М.В. Обменные процессы в водных растворах сахаридов // Журнал физической химии. 1998. **72**, № 5. 869–874.
- 3. Усманов С.М., Шакирьянов Э.Д., Спивак С.И. Модели дискретных преобразований при численном решении обратных задач ЯМР // Обозрение прикладной и промышленной математики. 2001. 8, вып. 1. 352–353.
- 4. Усманов С.М., Шакирьянов Э.Д., Заиков Г.Е. Численное решение обратной задачи самодиффузии // Пластические массы. 2002. № 7. 39–40.
- 5. Зотьев Д.В., Филиппов М.Н., Ягола А.Г. Об одной обратной задаче количественного рентгеноспектрального микроанализа // Вычислительные методы и программирование. 2003. **4**, № 1. 30–36.
- Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. М: Наука, 1990.

Поступила в редакцию 12.08.2005