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A METHOD TO CUT CONVEX POLYHEDRONS AND ITS APPLICATIONS TO ILL-POSED
PROBLEMS

V.N. Titarenko' and A. G. Yagola?®

We first consider linear ill-posed problems on compact sets of a special structure. Second, two approaches
based on the method to cut convex polyhedrons for estimation of an error of an approximate solution are
proposed. Finally, the domain the exact solution of the inverse problem for the heat conduction equation
belongs to is constructed.

1. Problem statement. The main feature of ill-posed problems is the impossibility to estimate the proximity of
an approximate solution of a problem to its exact one [1, 2]. However, if it is known that the exact solution belongs
to some compact set, then the problem becomes well-posed and an error estimation of the approximate solution is
possible. In this paper, we consider two approaches to error estimation under the condition that the solution belongs
to a compact set of a special structure.

Many linear problems may be reduced to solving the operator equation

Bg=4v¢, €@ eV (1)

where B is a linear continuous operator acting from a linear normed space ® into a linear normed space ¥. In practice,
exact forms of B and ¢ are often unknown. Instead, we have an approximate linear continuous operator B, and an
approximate right-hand side 15 such that Yo € ®: ||By — Brelle < hll¢lls, || — ¥s||le < &, where h > 0 is an error
of the approximate operator and § > 0 is an error of the approximate right-hand side.

2. Approximate solution. Assume that the exact solution ¢ of problem (1) belongs to a compact set M and
the operator B performs the one-to-one mapping of M onto BM C ¥. As is shown [2], the set

Oy ={p € M :||Brp — Uslle < hllelle + 3}

may be adopted as a set of approximate solutions to problem (1). Denoting n = (h,d), we can write ¢, — @ in ® as
n— 0.

In order to find an approximate solution ¢, of problem (1), it is convenient to use finite-dimensional Euclidean
spaces. One can take an n-dimensional Euclidean space Z” and a k-dimensional Euclidean space U” such that
approximate elements of the spaces ® and W can be written as linear functions of vectors z € Z" and u € U*,
respectively. Thus, the operator By is transformed into an operator A (i.e., into an n x k& matrix) and the approximate
right-hand side 15 of the operator equation (1) is transformed into a vector ua € U*. Then, the problem of finding
an approximate solution to (1) is reduced to that of finding of an element

2 €E{2 € Zy CZ" 1 ||Az — ual| < A(Ba, ¥s,h, 0, M)} (2)

3. The first approach to error estimation. Since ¢ belongs to the compact set M, there exists a set Zy; of
a priori restrictions for a vector z in Z". We suppose that Zys is a convex set in Z™. Tt is shown in [2] that when
a plecewise linear approximation of convex or monotone functions bounded above and below by certain constants is
used, the vector z of grid values of given functions forms the set Zy; of convex polyhedrons.
Let us introduce the set
7R ={r € 7" ||Az — ua|| < A}

As an approximate solution of problem (2), then, we take any element z, € Zf/[ = 72N Zy if Zf/[ # @. The set Z2
is an ellipsoid in Z". The set Z4; is convex, since it is an intersection of two convex sets [3]. We should find Z4; or a
set close to this set in some sense. As this set, we can take a polyhedron W circumscribed near the set Z4;. Let us
construct this polyhedron W.
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For this purpose, we first find a point 2z, € Zf/[ using, for instance, the algorithms described in [2]. Suppose that
this point z, € 74 exists, otherwise problem (1) has no solution on the set M with the error 5 given above.

Since the exact solution ¢ belongs to the set M, the vector z is bounded. Therefore we assume that it is possible
to construct a polyhedron V such that Z5 C V. Let Wy = V.

Now we consider an algorithm to construct the polyhedron W. Let the polyhedrons W, C W, C ... C Wy,
¢ > 0 be constructed. The polyhedron W,y is constructed as follows. A top of the polyhedron W, and the point z,
are connected by the segment. The plane tangent to the surface of Z4; is constructed through the point of intersection
with this segment. As aresult, two polyhedrons are obtained. Out of them we choose the one that contains the point z,
(if the point z, belongs to both the polyhedrons, then we choose the one that does not contain the above-selected top
of ;). All these constructions are possible and unique by virtue of convexity of the domains being considered.

Since the polyhedron W should be close to the set Z%:, qli}rg) W, = Z%;. Therefore, it is necessary to choose tops

of the polyhedron W, properly in order to ensure the convergence of the algorithm. For this purpose, we shall proceed
as follows. At a step ), we remember all tops of the polyhedron and at each subsequent step ¢ > ) we consider
those tops that belong to the polyhedron W,. Once all these tops has been identified, we remember the tops of the
polyhedron obtained and reiterate this procedure.

4. A method to cut convex polyhedrons. Let us consider a numerical algorithm for constructing the poly-
hedron W4, from the polyhedron W, by intersection with a half-space specified by a plane tangent to Z4%. This
algorithm is called the method to cut convex polyhedrons (MCCP) and is based on the following theory.

A convex polyhedron can be considered as an intersection of half-spaces bounded by planes.

Definition 1. A face of a convex polyhedron is called the intersection of this polyhedron with one of the
constituent planes.

Definition 2. Let 2y and zs be tops of a convex polyhedron. The segment xix5 is called the edge of this
polyhedron if any interior point z of the segment zi25 1s a boundary point for all the faces containing this point.

It is important in this definition that the point  is an interior point of the segment, since if the point z coincides
with one of the tops (#; or z3), then such a definition does not correspond to intuitive notions about an edge. This
statement is easy to verify in the two-dimensional case.

Lemma. A segment x1x5 connecting arbitrary tops x1 and xo of a convex polyhedron W s an edge of this
polyhedron if and only if for any interior point x of the segment x1xo and for any two points 21,25 € W that do not
belong to the segment x1xo the point x lies off the segment connecting the points &1 and .

Proof. Let the segment z;x2 be the edge of the polyhedron W and & be an interior point of the segment zix,.
Consider arbitrary points #; and &5 such that the point « belongs to the segment #;25. Let the point #; belong to
the polyhedron W and do not lie on the edge z125. The edge ;x5 is formed by the intersection of several faces. The
point & belongs to the edge z1x5. Therefore, the line that passes trough the points #; and - intersects at least one
of these faces, since this line does not contain the edge xi25 of the polyhedron W. This implies that the point 5 lies
outside the polyhedron W. In this case, for any two points &1, Zy; € W that do not belong to the segment x5 the
point z lies off the segment &125. The direct proposition is proved.

Now we prove the converse proposition. Let us consider arbitrary points 1, 22 € W that do not lie on the segment
z1x5. Let an interior point z of the segment zyx2 do not belong to the segment z125;. We assume that the convex
polyhedron W is considered in the n-dimensional space. Let us construct an e-neighborhood of the point z. Consider
the segment of the line connecting points z; and xz; whose endpoints are at the distance € from the point z. Interior
points of this segment are the points of the polyhedron W lying in the e-neighborhood. Let us construct a point P
that lies in the e-neighborhood and does not belong to the polyhedron W. From the e-neighborhood we consider an
arbitrary point P* that belongs to the e-neighborhood and does not belong to the segment z125. If the point P* does
not belong to the polyhedron W, then the point P is constructed (P = P*). Otherwise, we draw a line through the
points P* and z and find a segment on this line whose interior points lie in the e-neighborhood of the point z. This
segment is divided into two equal segments by the point . As a point P, we can take any interior point of one of
these segments that does not contain the point P*. Assume that the point P belongs to the polyhedron W. Then if
we set 1 = P* and Z; = P, we come to the conclusion that z,,Zs € W do not lie on the segment z;x2, although the
point = belongs to the segment z125. This is a contradiction. Therefore, any e-neighborhood of the point = contains
points such that some of them belong to the polyhedron W and the others do not. This means that the point z is a
boundary point of the set W. The boundary of the convex polyhedron W is formed by the intersection of faces, and
the point z belongs to some of them. A face presents a convex polyhedron in the (n — 1)-dimensional space, since
it 1s formed by the intersection of a plane and the convex polyhedron W. We repeat the same reasonings as for the
n-dimensional space. Thus, the point & is a boundary point for the face being considered and, hence, for all faces
containing the point . Therefore, the segment zi25 1s an edge. The lemma 1s proved.

Theorem. Tops 1 and zs of a convexr polyhedron W are connected by the edge of this polyhedron if and only if
for any top of the polyhedron W not coinciding with the tops 1 and x, the set of faces that pass through the given top
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does not contain all faces in common for the points x1 and x4.

Proof. Let the tops #; and z» of the polyhedron W be connected by an edge. By x3 we denote another top
of the polyhedron W. The faces in common for the points z; and x5 are intersected along the edge zy2s. Consider
any segment with the endpoint z3 intersecting the segment zix5 at an interior point . This segment intersects at
least one of these faces. Otherwise, there are points #; = x3, 25 € W such that they do not lie on the line ;25 and
x € 1Z3. According to the lemma, the segment z; x5 is not an edge. Therefore, the set of faces that pass through the
top x3 does not contain at least one face in common for the points x; and .

Now we prove the converse proposition. Let a point & belong to the segment #;z5. Consider a face the point z
belongs to. The point z can be either a boundary point or an interior point for the face. By z3 we denote any
polyhedron’s top belonging to the face and not coinciding with the tops z; and z». We construct the ray zsz.
Consider any point of the ray that does not lie on the segment zzz. This point does not belong to the polyhedron W,
since the ray xzsax intersects at least one face bounding the polyhedron W. Therefore, z is a boundary point for all
polyhedron’s faces containing the given point. In that case, the segment zi2» is an edge of the convex polyhedron.
The theorem 1s proved.

Let us discuss the MCCP. The information on coordinates of tops of the polyhedron W is enough to construct
the polyhedron W, 1. However, it is convenient to define the polyhedron W, by the following data: coordinates of its
tops; numbers of faces an arbitrary top belongs to; numbers of tops an arbitrary top is connected by edges.

The polyhedron W,y is formed by the intersection of W, and the half-space being considered.

Definition 3. A top of the polyhedron W, is a cut point if this top lies outside the half-space.

Definition 4. A top of the polyhedron W, is a boundary point if this top belongs to the plane forming the
polyhedron Wy,

Definition 5. A top of the polyhedron W, is an interior point if this top lies inside the half-space.

Definition 6. A point of the polyhedron W, is a new point if this top is formed by the intersection of the edge
connecting a pair “interior point—cut point” and the plane forming the polyhedron Wy .

If all tops of the polyhedron W, are cut or boundary points that do not belong to a single face, then the
polyhedron Wy, is an empty set.

We number all new points. If an interior point forms a pair “interior point—cut point” | then the edge connects it
with the new point that lies on the appropriate segment. For the interior point, therefore, we replace the number of
the corresponding cut point by the number of the new point. Then, the number of tops the interior point is connected
by the edges of the polyhedron W, is the same for the polyhedron W4 ..

Assume that all polyhedrons lie in the n-dimensional space. We note several simple propositions:

1. If two boundary points of the polyhedron W, are connected by an edge, they are also connected by this edge in
the polyhedron W,1.

2. Let the sum of the number of tops connected with a given top by edges and the number of tops that have not
been checked yet be equal to n. Then all non-checked tops are connected by edges with the given top.

3. If for a given pair of tops the number of common faces is less than (n — 1), then this pair is not connected by an

edge.

The last proposition is obvious, since a straight line is determined by a one-parameter equation.

Remark. For the two- and three-dimensional spaces the third proposition is a necessary and sufficient criterion
to select pairs of tops: a pair of tops is connected by an edge if and only if the number of common faces is equal to
(n —1). For spaces with a greater dimension (n > 4) the last statement is not valid.

Example. Let a unit four-dimensional cube whose top is at (0,0,0,0) and whose edges are parallel to the
coordinate axes be intersected with the half-space x1 — 22 — 223 < 0. Then, the points (0,0,0,0) and (0,0,0,1) are
connected by an edge and belong to the four common faces: 1 =0, 2, =0, 3 =0, 1 — 229 — 223 = 0.

We consider new and boundary points and find the points with which they are connected by edges. Boundary
points that are connected with the boundary or interior points by edges are also connected with the appropriate tops
of Wy41. Each new point is connected with one interior point from the appropriate pair “interior point—cut point”
by an edge. Let us find pairs of connected points among the boundary and new points. For each pair, we find the
number of common faces and their numbers (the new plane is not considered). If the number is less than (n — 2), the
pair is not connected by an edge in the polyhedron W,;,. Otherwise, we consider all remaining boundary and new
points and find whether there is a top that also belongs to these common faces. If such a top does not exist, the pair
of tops is connected by an edge.

After the cutting of the polyhedron W,, a part of tops (cut points) and a part of the edges may not belong to the
polyhedron W, ;. Therefore, it is necessary to enumerate all the tops and planes. After that, it is possible to pass on
to the next cut.
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The method works well for problems of a small dimension. For problems of a large dimension we should work
with large arrays. This essentially reduces the computation speed. Therefore, it is better to use the method being

described below.

5. The second approach to error estimation. When solving ill-posed problems, it is usually necessary to find

n
not the set Z% but a maximal value of the linear function f(z) = 3~ ¢;z; = (¢, z). Therefore, we propose a method for
i=1

solving linear programming problems on convex sets (these sets are intersections of a convex polyhedron and a some
convex body with a smooth surface; for many ill-posed problems, this body is an ellipsoid).

Let at some step the point 2P be constructed. We want to construct a point zP+!. For this purpose, we draw the
ray with the directing vector ¢ through zP and find the point z* of its intersection Z # z* with the surface S of the
convex set Zf/[. We consider the point Z = %(z* + Z). If n > 2, then it is necessary to construct the line that passes
through Z and whose directing vector is orthogonal to the ray » and to the vector ¢. We find cross points of the given
line with S and take their half-sum as a new point Z. Similarly, we build a new line orthogonal to these three vectors
and repeat this procedure (n — 2) times. The procedure accelerates the convergence of the algorithm essentially. We
suppose 2Pt = ¥, For the sequence {2P} the following is valid: pli}rg) f(zP) = Héan f(z).

M
In the numerical realization of the method, it is necessary to use MCCP because of the following two reasons.

The first reason consists in the fact that for some problems the point z* may be close or may belong to a domain
of intersection of several faces. Then, in an unsuccessful choice of the vectors r, the points z¥ will not maximize the
function f(z) fast enough. This will lead to an essential deceleration of the computation speed or to the program
termination when a value of the function f(z) may be considerably different from its maximal one. The second reason
consists in the desire to realize the criterion for the program to stop when the value f(z?) is close to the maximum.

Therefore, in order to construct the vector r, it is necessary to construct a polyhedron X containing the point z*
inside it. Then, one should consider the intersection of the given polyhedron with all half-spaces whose boundary planes
are at a certain distance R > 0 from the point z*. We may take a rectangular pyramid as an initial polyhedron X,
because this pyramid has (n + 1) tops. Such a small number of tops is very important at large n. It is necessary to
use an optimal value of the parameter R, in order to easily construct a long vector r in the polyhedron X and, at
the same time, to use as smaller number of planes as possible. For the construction of the vector r, only very close
faces of the polyhedron Zy; are taken into account. Therefore, it 1s clear that if one chooses R very small, then, in the
presence of other faces close to the point z*, the point z constructed using the vector r will be close to the point z*.
Clearly, the number of iterations for the determination of a maximum of f(z) increases. If the value R is large, we
should work with large arrays and the computation time increases, too.

It may happen that at some stage all tops of the polyhedron X lie at the distance Ry < R from the point z*. In
that case, we should assume that a point maximizing the function f(z) is found. Thus, with the help of MCCP, it is
possible to formulate a criterion for the program to stop.

The method to construct the vector r and the criterion for the program to stop should be supplemented by the
following. The problem consists in the maximization of the function f(z) on the set Z4; = Zy N Z2 but not on Zy.
However, while constructing the polyhedron X around the point z*, only faces of the polyhedron Z; are taken into
account and the presence of the smooth surface of the set Z2 is not taken into account. Therefore, it is necessary to do
the following. One should construct the polyhedron being considered only with regard to the boundary of the set Z;.
If the polyhedron obtained has tops lying outside the set Z2, one should construct a polyhedron using these tops and
the point z* as was described above in the method for the construction of the convex polyhedron W circumscribed
around Z5;.

6. The inverse problem for the heat conduction equation. As an example, we consider the following inverse
problem for the heat-conduction equation:

Uy = Ugyg, U(x, 0) = QD(I),
u(0,1) = 0, B p(x), Y(w) € L2[0, 7]
u(m,t) =0, u(e, T) = vle),

The function ¢(x) is given. We want to find the function ¢(z) on the set of functions convex up on the segment [0, 7]
and restricted from above by a constant C' > 0.

Let us use the method of separation of variables and the expansions of functions ¢(z) and () in sine series. We
write down:

iy

plz) = %ZS; sin(lz), o(z) = %Z Upsin(rz), S = /go(x) sin(le)de, U, = /1/)(1‘) sin(rz) dx

0
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Since U; = Sie'"T | we may use an (nx k) matrix A that transforms the vector z of grid values {z;}7 of the function ¢(x)
given on the grid {z;}7 into the vector of first & Fourier coefficients of the function ¥ (z):

, t=1,n

Ay = 1 (sin(lxi) —sin(lz;41) N sin(lz;) — sin(lxi_l)) e_lzT’ I—T%

)
2 Tip1 — X Ty — X

Thus, we pass on from functions ¢(z) and ¥ (z) square integrable on the segment [0, 7] to the vector of grid values
and to the vector of first k& Fourier coefficients, respectively. The transformation from the function ¥ (z) to the vector
of grid values is used in many monographs. Instead, the transformation to the vector of first & Fourier coefficients
allows us to find an error . As the initial information, we use grid values {y; }7* of the function s(z) on the grid
{&;}7" and a vector & = (£1,€2,...,&mn) such that

ly — ¥s(2)| <&, j=T,m

k
_ _ 9
We suppose that the function i(z) can be written as the finite Fourier series: ¢(z) = — E Visin(lxz). The func-
T
=1

tion ¢(x) is bounded on the segment [0, 7]. The supposition does not reduce the generality, since grid values of any
function ¢s(x) can be considered as grid values of the function ¢;s(x) representable as a finite Fourier series but with
a changed vector £ of errors. Write down a new vector of errors:

. p— o o
§=6+= D [Sthmaxe™ Tsinley), j=Tm
I=k+1
Taking into account the grid values y;, j = 1, m, and the changed vector of errors éj, j = 1, m, we write down:
Y1<DU<Y2, Y1<DU<Y2 (3)

where

I
—
>

v v 2 .. L
u:(UlaUZa"'aUk)a Yl]:y]_gja YZ]:y]+€]a Dji:;81n(1$j)a _]Zl,m, ?

k
2
For the error § we have: 6% = = E (U; — V)%, By virtue of boundedness of the function ¢(z) on the segment [0, 7],
7

=1
we can construct vectors vy, and vpax such that

Umin < U < Umax) Umin < v < VUmax (4)

Conditions (3) and (4) allow us to find the error ¢ using the grid values {y; }7* and the vector & of errors. For this
purpose, using MCCP, we construct the domain My the vectors u and v belong to. We take a vector u such that

k k
d = sup U —V)2 = inf sup Ur —vp)?
e St = (s 307 1)

The problem of the determination of the error § and the vector u is reduced to the determination of tops of the

Fig. 1. The exact solution and the area this solution belongs to (A = 0.29)
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polyhedron My . If a crude estimate of the error is used, then the problem is reduced to the determination of minimal
and maximal values of each coordinate for tops in the polyhedron My . In the last case, we can write

k
1 1
62 = 5= max — VY{min ? =35 max min
%;(Vl Vimin)®, U= 5 (Vimax + Virmin)
7. Example.
4
Let ¢(x) = —(m — )z be the exact solution; as a right-hand side we take ¢s5(x) = B@(x). Let T = 1072,
T

A =029 C =12 k=10, n = 20. The exact solution and the area this solution belongs to are represented in
Figure 1. This area is constructed using the method described in Section 5 of the paper.
All the algorithms described above were implemented in Fortran 90 (Microsoft Fortran PowerStation 4.0).
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