УДК 536.24

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СОВПАДАЮЩЕЙ СМЕШАННОЙ КОНВЕКЦИИ ПРИ ОБТЕКАНИИ ГОРИЗОНТАЛЬНОГО ЦИЛИНДРА ПЛОСКОЙ СТРУЕЙ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ

А.В. Афанасьев 1 , В.В. Афанасьев 1 , А.В. Хроменк o^1

На основе численного решения уравнений Навье–Стокса и уравнения энергии с применением графической обработки результатов расчетов проведено исследование теплообмена и структуры течения вязкой несжимаемой теплопроводной жидкости вблизи изотермического горизонтального цилиндра, обтекаемого плоской струей. Дано описание постановки задачи и численного метода ее решения. Показано хорошее соответствие между результатами вычислительного и натурного экспериментов. Выявлены зависимости структуры течения и интенсивности теплообмена от определяющих параметров.

Ключевые слова: изотермический круговой цилиндр, плоская струя, ламинарное обтекание, начальный участок струи, уравнения Навье–Стокса, уравнение энергии.

1. Введение. Настоящая работа посвящена численному исследованию обтекания горизонтального изотермического цилиндра плоской струей вязкой несжимаемой теплопроводной жидкости.

Практическое применение струйного охлаждения в промышленности разнообразно: сушка текстиля и бумаги, охлаждение заготовок из металла и стекла, тепловое регулирование в электронике и т.д. Актуальность данной задачи связана с возрастающей потребностью в технологии охлаждения микрочипов и "тепловых трубок", находящихся внутри портативных электронных устройств (персональных компьютеров). Широкое применение в данной области нашли именно ламинарные струи [1], так как они обеспечивают практически пассивное тепловое регулирование и позволяют экономить заряд батареи. Со все возрастающим ростом мощностей компьютеров использование струйного охлаждения предоставляет возможность добиваться эффективного охлаждения, не увеличивая габариты электронных устройств (компьютеров).

В настоящее время хорошо изучены задача о поведении затопленной струи жидкости, взаимодействующей с неподвижной средой, и задача о натекании струи жидкости на пластину [2, 3]. Задача о взаимодействии струи с телами различной формы изу-

чена в недостаточной мере, хотя представляет несомненный интерес, в частности, когда обтекаемое тело является круговым цилиндром.

При изучении обтекания кругового цилиндра струей жидкости можно воспользоваться результатами, полученными ранее при решении задачи об обтекании цилиндра бесконечным потоком жидкости [4–6]; эта задача является частным случаем струйного обтекания при условии, что ширина струи много больше диаметра цилиндра.

2. Постановка задачи. Рассматривается двумерная задача о ламинарном обтекании цилиндра плоской струей жидкости (рис. 1). На горизонтальный изотермический цилиндр (диаметр которого D, а температура поверхности T_w) из сопла шириной H натекает струя жидкости, температура которой на срезе сопла постоянна ($T_f, T_f < T_w$). Расстояние от среза сопла до цилиндра равно h. Профиль скорости на срезе сопла прямоугольный. Скорость V истечения жидкости из сопла предполагается дозвуковой. Цилиндр находится в начальном участке струи, т.е. h < 4H [2]; ширина сопла не превосходит радиуса цилиндра H < 0.5 D.

¹ Московский государственный университет леса, факультет механической и химической технологии древесины, 1-я Институтская ул., д. 1, 141005, Московская обл., г. Мытищи; e-mail: afanasev@mgul.ac.ru © Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

В основу модели положены уравнения Навье-Стокса в приближении Буссинеска с переходом к функции тока (Ψ) и функции интенсивности вихря (ω), а также уравнение энергии.

Использовалась полярная система координат со сгущением расчетной сетки у цилиндра с помощью преобразования $\xi = e^{-kr}$, где k = const - параметр сгущения.

Определяющими параметрами являются: $\text{Re} = \frac{VD}{v}$ — число Рейнольдса, $\text{Gr} = g \beta \Delta T \frac{D^3}{v^2}$ — число Грасгофа, $\text{Ri} = \frac{\text{Gr}}{\text{Re}^2}$ — число Ричардсона, $\text{Pr} = \frac{v}{a}$ — число Прандтля, $\frac{H}{D}$ — отношение ширины сопла к диаметру цилиндра, $\frac{h}{H}$ — отношение расстояния от среза сопла до цилиндра к ширине сопла.

Уравнение переноса энергии:

$$\frac{\partial \overline{T}}{\partial \overline{\tau}} - k \overline{\xi} \, \overline{V}_r \, \frac{\partial \overline{T}}{\partial \overline{\xi}} - \frac{k}{\ln \overline{\xi}} \, \overline{V}_\varphi \, \frac{\partial \overline{T}}{\partial \varphi} = \frac{1}{\operatorname{Re} \operatorname{Pr}} \frac{k^2}{\ln \overline{\xi}} \left[\overline{\xi} \, \frac{\partial}{\partial \overline{\xi}} \left(\overline{\xi} \, \ln \overline{\xi} \, \frac{\partial \overline{T}}{\partial \overline{\xi}} \right) + \frac{1}{\ln \overline{\xi}} \, \frac{\partial^2 \overline{T}}{\partial \varphi^2} \right]. \tag{1}$$

Уравнение переноса импульса:

$$\frac{\partial\overline{\omega}}{\partial\overline{\tau}} - k\,\overline{\xi}\,\overline{V}_r\,\frac{\partial\overline{\omega}}{\partial\overline{\xi}} - k\,\frac{\overline{V}_{\varphi}}{\ln\overline{\xi}}\,\frac{\partial\overline{\omega}}{\partial\varphi} = -\frac{\mathrm{Gr}}{\mathrm{Re}^2}\,\frac{k}{\mathrm{h}\,\overline{\xi}}\left[\frac{\partial}{\partial\varphi}\big(\overline{T}\,\cos(\varphi-\gamma)\big) + \overline{\xi}\,\frac{\partial}{\partial\overline{\xi}}\,\big(\ln\overline{\xi}\,\overline{T}\,\sin(\varphi-\gamma)\big)\right] + \\
+ \frac{1}{\mathrm{Re}}\,\frac{k^2}{\mathrm{h}\,\overline{\xi}}\left[\overline{\xi}\,\frac{\partial}{\partial\overline{\xi}}\Big(\overline{\xi}\,\ln\overline{\xi}\,\frac{\partial\overline{\omega}}{\partial\overline{\xi}}\Big) + \frac{1}{\mathrm{ln}\,\overline{\xi}}\,\frac{\partial^2\overline{\omega}}{\partial\varphi^2}\right],$$
(2)

где $\overline{V}_r = -\frac{k}{\ln \overline{\xi}} \frac{\partial \overline{\Psi}}{\partial \varphi}$ — безразмерная радиальная составляющая скорости и $\overline{V}_{\varphi} = k \overline{\xi} \frac{\partial \overline{\Psi}}{\partial \overline{\xi}}$ — безразмерная тангенциальная составляющая скорости.

Уравнение, связывающее безразмерную функцию интенсивности вихря с безразмерной функцией тока, имеет вид

$$\overline{\omega} = -\frac{k^2}{\ln \overline{\xi}} \left[\overline{\xi} \, \frac{\partial}{\partial \overline{\xi}} \left(\overline{\xi} \, \ln \overline{\xi} \, \frac{\partial \overline{\Psi}}{\partial \overline{\xi}} \right) + \frac{1}{\ln \overline{\xi}} \, \frac{\partial^2 \overline{\Psi}}{\partial \varphi^2} \right]. \tag{3}$$

Граничные условия для системы уравнений ставились следующим образом. Условия прилипания за-даны на цилиндре: $\overline{T} = \overline{T}_w = 1$; $\overline{\Psi} = 0$; $\overline{V}_r = 0$; $\overline{V}_{\varphi} = 0$, а также на внешних стенках сопла: $\overline{T} = \overline{T}_f = 0$; $\overline{\Psi} = \text{const}$; $\overline{V}_r = 0$; $\overline{V}_{\varphi} = 0$. На срезе сопла заданы безвихревое течение и равномерное распределение скорости: $\overline{T} = \overline{T}_f = 0; \overline{\Psi} = \frac{1}{k} \ln \overline{\xi}_1 \sin \varphi$ (в физическом эксперименте подобные условия можно получить с помощью сопла Витушинского); $\overline{\omega}$ определяется на границе из уравнения (3) с учетом сказанного выше. На внешней границе заданы условия полной проницаемости: $\frac{\partial \overline{T}}{\partial \overline{\xi}} = 0; \ \frac{\partial \overline{\nabla}_r}{\partial \overline{\xi}} = 0; \ \frac{\partial \overline{\nabla}_r}{\partial \overline{\xi}} = 0; \ \frac{\partial \overline{\nabla}_{\varphi}}{\partial \overline{\xi}} = 0.$

Начальные условия: $\overline{T} = \overline{T}_w = 1$ на поверхности цилиндра, во всей расчетной области $\overline{T} = \overline{T}_f = 0$; на срезе сопла задано равномерное распределение скорости, во всей остальной расчетной области — задано течение, соответствующее безотрывному обтеканию цилиндра струей идеальной жидкости конечной ширины. Безразмерные переменные введены следующим образом (безразмерные величины отмечены чертой сверху): $\tau = \frac{D}{V}\overline{\tau}; \Psi = VD\overline{\Psi};$ $\omega = \frac{V}{D}\overline{\omega}; V_r = V\overline{V}_r; V_{\varphi} = V\overline{V}_{\varphi}; T = \Delta T \overline{T} + T_f,$ где D – диаметр цилиндра, V — модуль скорости на срезе сопла, T_f — температура струи на срезе сопла и ΔT — разность температуры цилиндра и температуры струи на срезе сопла.

Здесь использовались обозначения: $\Psi-$ функция тока; ω интенсивность вихря; V_r — радиальная компонента скорости; V_{φ} тангенциальная компонента скорости; T — температура; au — время; ξ — координата в радиальном направлении; φ — координата в тангенциальном направлении; γ — угол между вектором ускорения свободного падения и вектором скорости на срезе сопла.

Рис. 2. Схема расположения узлов сетки в координатах ξ, φ

3. Метод численного решения. Задача решалась конечно-разностным методом. Для перехода от системы дифференциальных уравнений и краевых условий к соответствующим конечно-разностным соотношениям рассматриваемая область изменения безразмерных координат ($\overline{\xi}, \varphi$) была заменена равномерной сеткой узловых точек с номерами i, j, которые изменялись в диапазонах $0 \leq i \leq n-1$ и $0 \leq j \leq m-1$ (рис. 2). Сетка задавалась как $(n; l \times m)$, где n и m — количество всех узлов в радиальном и тангенциальном направлениях соответственно, а l — количество узлов, приходящихся на сопло, в радиальном направлении. Параметр сетки k выбирался следующим образом: $k = -\frac{1}{h/D} \ln(l/n)$.

Безразмерный шаг между узловыми точками в радиальном направлении $\Delta \overline{\xi} = \frac{\overline{\xi}^0}{n}$, где $\overline{\xi}^0 = e^{-k/2}$, а в тангенциальном направлении $\Delta \varphi = \frac{2\pi}{m-1}$ (с учетом того, что значения функций при $\varphi = 0$ (j=0) и $\varphi = 2\pi$ (j=m-1) хранились в разных ячейках памяти).

Безразмерное время протекания процесса было разбито на конечные интервалы. Величина шага по времени $\Delta \tau_q$ зависела от номера временно́го слоя и определялась из условий практической устойчивости [7].

Аппроксимация конечными разностями дифференциальных уравнений (1) и (2) проводилась по модифицированной явной схеме, ориентированной "против потока", с компенсацией погрешности первого порядка [7].

Для одномерного модельного уравнения переноса $\frac{\partial T}{\partial t} = -U \frac{\partial T}{\partial x} + a \frac{\partial^2 T}{\partial x^2}$ приведем пример конечноразностного шаблона выбранной схемы для узла сетки с номером *i*:

$$\begin{aligned} \frac{T_i^* - T_i}{\Delta \tau} &= \left(|U_i| - U_i \right) \frac{T_{i+1} - T_i}{2\Delta x} - \left(|U_i| + U_i \right) \frac{T_i - T_{i-1}}{2\Delta x} + \\ &+ a \frac{T_{i+1} - 2T_i + T_{i-1}}{\Delta x^2} \left[\left| 1 - |U_i| \frac{\Delta x}{2a} \right| + \left(1 - |U_i| \frac{\Delta x}{2a} \right) \right], \end{aligned}$$

где T_i^* — значение температуры в узле сетки с номером *i* на новом временном шаге. Эта схема неоднократно использовалась для решения задач естественной конвекции около горизонтального цилиндра и подробно описана в работах [7, 8].

Для аппроксимации составляющих скорости использовались конечные разности второго порядка.

Уравнение (3) решалось методом установления по неявной схеме с использованием продольно–поперечных прогонок. По тангенциальной координате использовалась циклическая прогонка [9].

На основе этого алгоритма авторами разработана и реализована программа численного счета на языке программирования C++.

Рис. 3. Сравнение с физическим экспериментом при Gr = $2.5 \cdot 10^6$, Pr = 0.7, H = 0.262 D, h = 2H: 1 — физический эксперимент [11]; 2 — вычислительный эксперимент настоящей работы; a) Re = 169, Ri = 88.532; b) Re = 712, Ri = 4.931

Программа предоставляет пользователю возможность ввода исходных данных (таких как физические параметры жидкости, диаметр цилиндра, ширина среза сопла, расстояние от среза сопла до цилиндра,

Рис. 4. Обтекание цилиндра бесконечным потоком: а) картина течения для параметров $Gr = 2.5 \cdot 10^5$, Re = 2500, Ri = 0.04, Pr = 0.7; b) распределение локальных чисел Nu для параметров $Gr = 2.5 \cdot 10^5,$ $Re = 100 \div 4000, Ri = 0.0156 \div 25, Pr = 0.7$

Рис. 5. Струйное обтекание цилиндра при H = 0.131 D, h = 2H: а) картина течения для параметров $Gr = 2.5 \cdot 10^5$, Re = 2500, Ri = 0.04, Pr = 0.7; b) распределение локальных чисел Nu для параметров $Gr = 2.5 \cdot 10^5$, $Re = 100 \div 4000$, $Ri = 0.0156 \div 25$, Pr = 0.7

температура поверхности цилиндра, скорость на срезе сопла) и задания параметров расчетной области. В ходе вычислительного эксперимента с помощью графического представления результатов расчетов можно наблюдать нестационарные картины течения и полей температур.

Разработанная программа позволяет получить информацию о распределении температуры и скорости в области расчета, а также значения среднего и локального теплообмена на цилиндре. Значение числа Нуссельта на поверхности цилиндра вычислялось по формуле $\operatorname{Nu} = k \,\overline{\xi}^0 \left. \frac{\partial \overline{T}}{\partial \overline{\xi}} \right|_{\overline{\epsilon} - \overline{\epsilon}^0}$ с использованием

трехточечной схемы второго порядка.

4. Обсуждение результатов расчетов. Как показано в [10], распределение скорости на срезе сопла, определяемое формой кромки сопла, существенно влияет на теплообмен и гидродинамику. Мы рассматривали случай равномерного распределения скорости на срезе сопла, что соответствовало физическому эксперименту [11]. Все расчеты проводились для случая совпадающей смешанной конвекции, т.е. $\gamma = 0$. Были выполнены методические расчеты по определению параметров сетки (чисел n, l, m), таких, чтобы условия на внешней границе расчетной области не оказывали существенного влияния на процессы в окрестности цилиндра.

Авторами были проведены вычислительные эксперименты с входными параметрами, соответствующими входным параметрам физических экспериментов [11]; результаты сопоставлений полей температур и локального теплообмена приведены в работе [12]. Следует отметить удовлетворительное согласование результатов вычислительных и натурных экспериментов. На рис. 3 приведено сравнение значений локальных чисел Nu по данным вычислительного и физического экспериментов. Имеются расхождения в лобовой и кормовой зонах. Возможно, это связано с тем, что измерения в лабораторных экспериментах проводились зондовым методом, а это в свою очередь могло отразиться на гидродинамике и теплообмене, особенно в кормовой зоне, где происходит формирование теплового факела.

Результаты, представленные в настоящей работе, получены для следующих постоянных параметров задачи: $\gamma = 0$, Gr = $2.5 \cdot 10^5$, Pr = 0.7. Остальные определяющие параметры изменялись согласно таблице.

На рис. 4a-7a иллюстрируется влияние отношения ширины сопла H к диаметру цилиндра D на структуру течения вблизи цилиндра. Для всех расчетов, представленных на этих рисунках, выбраны следующие числа подобия:

$$Gr = 2.5 \cdot 10^5$$
; $Re = 2500$; $Pr = 0.7$.

На рис. 4 а представлена картина течения при обтекании цилиндра бесконечным потоком, за цилиндром образуется дорожка Кармана. При струйном обтекании картина течения существенно зависит от отношения ширины сопла к диаметру цилиндра при h = 2H (рис. 5 а – 7 а). При малой относительной ширине струи (рис. 5 а и 6 а) за цилиндром образуются симметричные вихри, при больших величинах вихри периодически отрываются от поверхности цилиндра, образуя вихревую дорожку (рис. 7 а).

	Re	Ri	H/D	h/H	сетка
1	100	25	0.131	2	$(140; 110 \times 73)$
2	100	25	0.262	1	$(140; 110 \times 73)$
3	100	25	0.262	2	$(140;90 \times 73)$
4	100	25	0.394	2	$(140;77 \times 73)$
5	100	25	бесконечный поток		$(140;90 \times 73)$
6	500	1	0.131	2	$(140; 110 \times 73)$
7	500	1	0.262	1	$(140; 110 \times 73)$
8	500	1	0.262	2	$(140;90 \times 73)$
9	500	1	0.394	2	$(140; 77 \times 73)$
10	500	1	бесконечный поток		$(140;90 \times 73)$
11	1000	0.25	0.131	2	$(140; 110 \times 73)$
12	1000	0.25	0.262	1	$(140; 110 \times 73)$
13	1000	0.25	0.262	2	$(140;90 \times 73)$
14	1000	0.25	0.394	2	$(140; 77 \times 73)$
15	1000	0.25	бесконечный поток		$(140;90 \times 73)$
16	2500	0.04	0.131	2	$(140; 110 \times 73)$
17	2500	0.04	0.262	1	$(140; 110 \times 73)$
18	2500	0.04	0.262	2	$(140;90 \times 73)$
19	2500	0.04	0.394	2	$(140; 77 \times 73)$
20	2500	0.04	бесконечный поток		$(140;90 \times 73)$
21	4000	0.0156	0.131	2	$(140; 110 \times 73)$
22	4000	0.0156	0.262	1	$(140; 110 \times 73)$
23	4000	0.0156	0.262	2	$(140;90 \times 73)$
24	4000	0.0156	0.394	2	$(140; 77 \times 73)$
25	4000	0.0156	бесконечный поток		$(140; 90 \times 73)$

Определяющие параметры задачи

Рис. 6. Струйное обтекание цилиндра при H = 0.262 D, h = 2H: а) картина течения для параметров Gr = $2.5 \cdot 10^5$, Re = 2500, Ri = 0.04, Pr = 0.7; b) распределение локальных чисел Nu для параметров Gr = $2.5 \cdot 10^5$, Re = $100 \div 4000$, Ri = $0.0156 \div 25$, Pr = 0.7

Распределения локальных чисел Nu представлены на рис. 4 b – 7 b. В случаях, когда за цилиндром происходит отрыв вихрей, распределение локальных чисел Nu в кормовой зоне до угла отрыва нарушает свою симметрию относительно вертикальной оси. Отметим, что максимальное значение числа Nu, которое достигается в лобовой точке, практически линейно зависит от числа Re.

Рис. 7. Струйное обтекание цилиндра при H = 0.394 D, h = 2H: а) картина течения для параметров Gr = $2.5 \cdot 10^5$, Re = 2500, Ri = 0.04, Pr = 0.7; b) распределение локальных чисел Nu для параметров Gr = $2.5 \cdot 10^5$, Re = $100 \div 4000$, Ri = $0.0156 \div 25$, Pr = 0.7

 180°

Рис. 8. Распределения локальных чисел Nu для параметров H = 0.262 D, h = H, Gr $= 2.5 \cdot 10^5$, Re $= 100 \div 4000$, Ri $= 0.0156 \div 25$, Pr = 0.7

Рис. 9. Распределения локальных чисел Nu при струйном обтекании цилиндра для Gr = $2.5 \cdot 10^5$, Re = 100, Ri = 25, Pr = 0.7 в зависимости от отношений H/D и h/H

Случай, когда расстояние от среза сопла до цилиндра постоянно (h = 0.262 D), а изменялась лишь ширина сопла, представлен на рис. 5 b и 8. Из анализа графиков зависимости локальных чисел Nu от тангенциальной координаты следует, что значение числа Nu в лобовой точке при изменении ширины сопла вдвое практически не меняется.

На рис. 9-13 отображены данные по локальному теплообмену при постоянном значении числа Re для различных отношений H/D и h/H.

Заметим, что между видом течения вблизи цилиндра и распределением локального теплообмена существует зависимость. Стационарное течение характеризуется тем, что симметрия распределения локальных чисел Нуссельта относительно вертикальной оси сохраняется. С появлением за цилиндром вихревой дорожки распределение Nu изменяется со временем и симметрия относительно вертикальной оси нарушается. Безотрывному обтеканию соответствует единственный минимум локального теплообмена на угле 180°.

На рис. 9 представлены данные по локальному теплообмену для Re = 100. Образование вихрей за цилиндром не наблюдается для всех рассмотренных случаев, преобладает естественная конвекция и течение стационарно.

Рис. 10. Распределения локальных чисел Nu при струйном обтекании цилиндра для Gr = $2.5 \cdot 10^5$, Re = 500, Ri = 1, Pr = 0.7 в зависимости от отношений H/D и h/H

гис. 12. Гаспределения локальных писел I
си при струйном обтекании цилиндра для Gr $=2.5\cdot10^5,$ Re
 =2500, Ri =0.04, Pr=0.7 в зависимости от отношений
 H/D и h/H

Рис. 11. Распределения локальных чисел Nu при струйном обтекании цилиндра для Gr = $2.5 \cdot 10^5$, Re = 1000, Ri = 0.25, Pr = 0.7 в зависимости от отношений H/D и h/H

Рис. 13. Распределения локальных чисел Nu при струйном обтекании цилиндра для Gr = $2.5 \cdot 10^5$, Re = 4000, Ri = 0.0156, Pr = 0.7 в зависимости от отношений H/D и h/H

При числе Re = 500 (рис. 10) для случая обтекания цилиндра бесконечным потоком в кормовой области происходит образование двух симметричных вихрей, а в случае струйного обтекания вихри за цилиндром не образуются и течение стационарно.

Для больших значений числа Re (Re = 1000 ÷ 4000) при обтекании цилиндра бесконечным потоком в кормовой зоне образуется дорожка Кармана.

При струйном обтекании для Re = 1000 течение стационарное и за цилиндром образуются два симметричных вихря (рис. 11). Для Re = 2500 (рис. 12) картина течения зависит от отношений H/D и h/H. При H = 0.131 D и H = 0.262 D за цилиндром образуются два симметричных вихря, а при H = 0.394 Dвихри за цилиндром периодически отрываются.

На рис. 13 представлены зависимости локальных чисел Nu от отношений H/D и h/H для Re = 4000. Для струйного течения при H = 0.131 D за цилиндром образуются два симметричных вихря, а при H = 0.262 D и H = 0.394 D вихри за цилиндром отрываются, образуя дорожку Кармана.

Таким образом, ширина сопла существенно влияет на режим течения — появление вихрей за цилиндром и последующий их отрыв. Уменьшая отношение ширины струи к диаметру цилиндра, в некоторых случаях можно добиться безотрывного обтекания.

5. Заключение. В работе описана математическая модель и метод численного решения задачи о взаимодействии плоской струи с горизонтальным круговым цилиндром. Авторами разработана и реализована программа проведения вычислительных экспериментов, которая позволяет исследовать теплообмен и гидродинамику при струйном обтекании цилиндра. Визуализация результатов вычислительных экспериментов дает возможность наблюдать, как изменяются структура течения и тепловой след за цилиндром в зависимости от определяющих параметров задачи. Выполнено сопоставление данных вычислительных и физических экспериментов по локальному теплообмену, показано их удовлетворительное согласование.

Рассмотренный метод решения задачи об обтекании цилиндра струей жидкости можно применить и к случаю взаимодействия струи с цилиндром в замкнутом объеме или при наличии преград.

Результаты вычислительных экспериментов, а именно данные по локальному теплообмену, могут быть использованы при проектировании портативных компьютеров с целью оптимизации теплового регулирования.

Авторы выражают благодарность проф. А.В. Королькову за ценные указания и внимание к работе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Guarino J.R., Manno V.P. Characterization of laminar jet impingement cooling in portable computer applications // Semiconductor Thermal Measurement and Management Symposium. San Jose (California, USA), 2001.
- 2. Абрамович Г.Н. Теория турбулентных струй. М.: Наука, 1984.
- 3. Юдаев Б.Н., Михайлов М.С., Савин В.К. Теплообмен при взаимодействии струй с преградами. М.: Машиностроение, 1977.
- 4. Хроменко А.В. Гидродинамика и теплообмен горизонтального цилиндра при ламинарной смешанной конвекции: Дисс. ... канд. техн. наук. М., 1990.
- 5. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974.
- 6. Roshko A. On the development of turbulent wakes from vortex streets. Report 1191. California Institute of Technology. Pasadena (California, USA), 1954.
- 7. *Купцова В.С.* Численные методы исследования процессов тепло- и массопереноса. Уч. пособие. Ч. 2. М.: МЛТИ, 1976.
- 8. Корольков А.В., Купцова В.С., Малинин В.Г. Численное исследование сопряженного теплообмена в горизонтальном цилиндре, окруженном бесконечным твердым массивом. Научн. тр. Вып. 130. М.: МЛТИ, 1981.
- 9. Калиткин Н.Н. Численные методы. М.: Наука, 1978.
- McDaniel C.S., Webb B.W. Slot jet impingement heat transfer from circular cylinders // Int. J. of Heat and Mass Transfer. 2000. N 43. 1975–1985.
- 11. Беляков В.А., Хроменко А.В., Парыгин К.Э., Климов В.О. Гидродинамика и теплообмен горизонтального цилиндра в плоской турбулентной струе в режиме смешанной конвекции. Научн. тр. Вып. 319. М.: Изд-во МГУЛеса, 2003.
- 12. Афанасьев А.В., Афанасьева В.В. Расчет гидродинамики и теплообмена при струйном обтекании цилиндра // Труды IV Российской Национальной Конференции по Теплообмену (РНКТ-4). Т. 2. Вынужденная конвекция однофазной жидкости. М.: Изд-во МЭИ, 2006. 50–53.

Поступила в редакцию 22.01.2007