УДК 517.444:519.65

НЕПРЕРЫВНЫЕ ВЭЙВЛЕТ-ПРЕОБРАЗОВАНИЯ И ИХ ИЗОБРАЖЕНИЯ В ПАКЕТЕ MATHCAD

Я. М. Жилейкин 1 , Ю. И. Осипик 1 , А. Я. Хасин 2

Вычисление непрерывных вэйвлет-преобразований осуществляется с помощью оптимальных квадратурных формул типа Филона. Для визуализации полученных вэйвлет-преобразований используется пакет MathCad, возможности которого позволяют в наглядном виде представить свойства сигнала. Работа выполнена при поддержке РФФИ (коды проектов 05–01–00984 и 04–02–17259).

Ключевые слова: вэйвлет-преобразования, квадратурные формулы, визуализация, интегральные преобразования.

1. Постановка задачи. Статья посвящена вэйвлет-преобразованию функции f(x). Вэйвлет-преобразованием называется интегральное преобразование

$$W_f(s,t) = s^{-1/2} \int_{-\infty}^{\infty} f(x)\psi\left(\frac{x-t}{s}\right) dx. \tag{1}$$

Пусть функция f(x) определена на отрезке [0,1] и принадлежит классу $H^{\alpha}(M)$ ($\alpha>0$) всюду в [0,1] за исключением конечного числа точек x_{ν} , $\nu=1,2,\ldots,l$. Класс $H^{\alpha}(M)$, $\alpha=[\alpha]+\alpha_1$, $0<\alpha_1\leqslant 1$, содержит функции f(x), производные которых удовлетворяют следующим неравенствам: $|f^{(k)}(x)|\leqslant M$ при $0\leqslant k\leqslant [\alpha]$ и $|f^{([\alpha])}(x+\delta)-f^{([\alpha])}(x)|\leqslant M|\delta|^{\alpha_1}$. Предполагается, что в точках x_{ν} функции f(x) имеют разрывы производных порядка m_{ν} , где $0\leqslant m_{\nu}<[\alpha]$. Чтобы вычислить $W_f(s,t)$, функция f(x) продолжается вне отрезка [0,1]. Простейшие способы продолжения — это продолжение нулем либо периодически с периодом 1. От функции ψ требуется кусочная гладкость в R ($-\infty < x < \infty$) и быстрое убывание на бесконечности. Последнее характеризуется наличием "реального" носителя [-K,K], вне которого функция $\psi(x)$ пренебрежимо мала. Важное свойство вэйвлетов — наличие n нулевых моментов:

$$\int_{-\infty}^{\infty} x^k \psi(x) dx = 0, \quad k = 0, 1, \dots, n - 1.$$

Существование одного нулевого момента — это необходимое условие, накладываемое на $\psi(x)$.

В настоящей статье непрерывное вэйвлет-преобразование (1) используется для выявления характерных свойств f(x) по двумерной функции $W_f(s,t)$.

Для вычисления вэйвлет-преобразований с заданной точностью используются квадратурные формулы, описанные в [1], где приведены не только сами алгоритмы, но и неулучшаемые оценки погрешности непрерывного вэйвлет-преобразования.

- **2.** Свойства рассматриваемых вэйвлетов. Рассмотрим вэйвлет-функции, широко используемые на практике.
 - 1. Семейство вэйвлетов, порожденных функцией Гаусса.

Функцией Гаусса называется функция $\phi(x) = ce^{-x^2/2}$. Сама эта функция не удовлетворяет требованиям, накладываемым на вэйвлеты, однако ее производные могут быть использованы в качестве базисных функций. Например, первая производная имеет вид $\phi'(x) = \psi_1(x) = -cxe^{-x^2/2}$. Константу c мы выбираем из условия нормировки в пространстве L_2 :

$$\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1, \quad \int_{-\infty}^{\infty} |-cxe^{-x^2/2}|^2 dx = c^2 \int_{-\infty}^{\infty} x^2 e^{-x^2} dx = c^2 \frac{1}{2} \pi^{1/2} = 1.$$

¹ Научно-исследовательский вычислительный центр, Московский государственный университет им. М. В. Ломоносова, Ленинские горы, 119991, Москва; e-mail: jam@srcc.msu.su

 $^{^2}$ Московский энергетический институт, Красноказарменная ул., 14, 111250, Москва; e-mail: khasinAY@mpei.ru

[©] Научно-исследовательский вычислительный центр МГУ им. М.В. Ломоносова

Отсюда получаем $c=\sqrt{\frac{2}{\pi^{1/2}}}=c_G$ и $\psi_1^G(x)=-c_Gxe^{-x^2/2}$. На рис. 1 приводится график функции ψ_1^G .

На практике нередко используется вторая производная функции Гаусса (взятая со знаком минус), часто называемая "мексиканской шляпой": $\psi_2^G(x)=\frac{2}{\sqrt{3}}\pi^{-1/4}(1-x^2)\,e^{-x^2/2}$ (рис. 2). Легко проверить, что функция ψ_1^G имеет один нулевой момент, а функция ψ_2^G — два нулевых момента.

Важное свойство этих вэйвлетов заключается в том, что они являются вещественными функциями, поэтому их удобно применять для представления вещественных функций. Рассматриваемые в статье вэйвлеты характеризуются быстрым убыванием на бесконечности.

Рис. 3. Графики действительной (а) и мнимой части (б) $\psi^M(x)$

2. Вэйвлет Морле (модулированный гауссиан).

Вэйвлет Морле — это, по сути дела, гармоническая функция, модулированная функцией Гаусса:

$$\psi^{M}(x) = \pi^{-1/4} \left(e^{-i\xi_{0}x} - e^{-\xi_{0}^{2}/2} \right) e^{-x^{2}/2}.$$

Функция Морле имеет один нулевой момент. На практике используются большие значения параметра ξ_0 ($\xi_0\geqslant 5$), что позволяет пренебречь слагаемым $e^{-\xi_0^2/2}$. В результате $\psi^M(x)\approx \pi^{-1/4}e^{-i\xi_0x}e^{-x^2/2}$. Если

записать вэйвлет Морле при наличии сдвига t и масштабного коэффициента s, то получим

$$\psi^M \left(\frac{x-t}{s} \right) \approx \pi^{-1/4} e^{-i\xi_0(x-t)/s} e^{-((x-t)^2)/2s^2}.$$

На рис. За и Зб изображены действительная и мнимая части функции $\psi^M(x)$ при $\xi_0=5$. В результате вэйвлет-функция Морле позволяет получить аналог преобразования Фурье с частотой ξ_0/s , модулированный функцией Гаусса с полушириной $\sqrt{2}\,s$, локализованной в окрестности точки x=t. При масштабном коэффициенте s, стремящемся к нулю, возрастает частота этой функции и степень ее локализации. Большого внимания заслуживает исследование с помощью вэйвлета Морле осциллирующих функций, которое позволяет рассмотреть вэйвлет-преобразование, когда переменными функции являются амплитуда и фаза.

В рассмотренных выше случаях значение параметра K, характеризующего носитель, можно взять величиной порядка 6–7. Однако если взять K и s в виде степеней 2, то объем вычислений можно заметно сократить.

3. Численная и графическая реализация вэйвлет-преобразований. Результатом вэйвлет-преобразования является функция $W_f(s,t)$ (см. (1)). Обычно параметр t играет роль времени, а параметр s — масштаба. В силу двумерности функции $W_f(s,t)$, полученные преобразования можно изобразить в виде плоской картинки.

Все результаты, представленные в настоящей статье, в том числе графические, были получены в пакете MathCad [2]. Для изображения результатов использовалась компонента 3DPlot в режиме Contour Plot. Эта компонента позволяет изображать на экране функции двух переменных в виде цветовой карты. Интенсивность цвета в каждой точке графика определяется соответствующим значением $W_f(s,t)$. Большим значениям соответствует бо́льшая интенсивность (белый цвет), меньшим значениям — меньшая (черный цвет). Нулевые значения изображаются серым цветом. Интенсивность в точках, где $W_f(s,t)$ не определена, рассчитывается пакетом MathCad автоматически (интерполяция). Помимо вышеперечисленного, компонента 3DPlot обладает встроенными средствами сглаживания изображения, что позволяет без дополнительных ухищрений получить более качественную картинку.

Во всех вычислительных экспериментах разрешение по параметру t бралось равным 256 точкам, по масштабу s-64 точкам. В приведенных графиках по оси абс-

Рис. 4. График функции "пила"

цисс откладывается параметр n, связанный с t_n соотношением $t_n=\frac{n}{256}$, $0\leqslant n\leqslant 256$, а по оси ординат откладывается $s_m=2^{-m}$, $2\leqslant m\leqslant 11$. Таким образом, отрезок наблюдения по t варьируется от 0 до 1, по масштабу s — от 2^{-2} до 2^{-11} . Такой выбор параметров обусловлен стремлением подобрать коэффициенты степени 2. Это позволило вычислять коэффициенты квадратурных формул, связанные с вэйвлетом, только один раз. Данный прием ускорил процесс вычисления вэйвлет-преобразования, не снижая при этом точности результата.

Перейдем к рассмотрению конкретных функций. Начнем с функций, имеющих разрыв в средней точке. Например, функция "пила" (рис. 4) дается равенством $f_1(x) = \begin{cases} x, & 0 \leqslant x \leqslant 0.5, \\ -1+x, & 0.5 < x \leqslant 1. \end{cases}$

Заметим, что в точке x=0.5 функцию $f_1(x)$ можно определить произвольным образом, например $f_1(0.5)=0$ или $f_1(0.5)=-0.5$.

Для функции $\psi_1^G(x)$ на основе формулы (1) и разложения $f_1(x)$ в ряд Тейлора в точке t нетрудно вычислить $W_f(s,0.5)$. Справедливо равенство

$$W_f(s, 0.5) = c \, s^{1/2} + 2 \, d \, s^{3/2},$$

где
$$c=\int\limits_{-\infty}^{0}\psi_{1}^{G}(\eta)\,d\eta=\sqrt{\frac{2}{\pi^{1/2}}}\approx 1.062$$
 и $d=\int\limits_{-\infty}^{0}\eta\,\psi_{1}^{G}(\eta)\,d\eta=-\pi^{1/4}\approx -1.331<0.$ Так как $s^{3/2}$ убывает

Рис. 5. Вэйвлет-изображение функции "пила", построенное с помощью $\psi_1^G(x)$

Рис. 6. Изображение модуля вэйвлет-преобразования функции "пила", построенное с помощью $\psi_1^G(x)$

при $s \to 0$ быстрее, чем $s^{1/2}$, то W(s, 0.5) — положительная функция, и на рис. 5 изображение имеет ярко белый цвет, который постепенно ослабевает с ростом s.

При t=0.5-Ks мы имеем равенство $W_f(s,t)=2\,d\,s^{3/2}$, т.е. вэйвлет-преобразование становится отрицательным. Это справедливо и для $0\leqslant t<0.5-Ks$. Ввиду симметрии функций $f_1(x)$ и $\psi_1^G(x)$, картинка на рис. 5 также обладает симметрией.

Модуль полученного преобразования иллюстрируется на рис. 6, где темным областям соответствуют малые положительные значения, а светлым — большие значения $|W_f(s,t)|$.

Рис. 7. Вэйвлет-изображение функции "пила", построенное с помощью $\psi_2^G(x)$

Рис. 8. Изображение модуля вэйвлет-преобразования функции "пила", построенное с помощью $\psi_2^G(x)$

Для функции $f_1(x)$ и вэйвлета $\psi_2^G(x)$ картинки имеют несколько другой вид (рис. 7, 8).

Так как функция "пила" — нечетная относительно t=0.5, а $\psi_2^G(t-0.5)$ — четная функция относительно этой точки, то $W_f(s,t)$ — нечетная функция относительно t=0.5, при этом $W_f(s,0.5)=0$, что

объясняется, в частности, тем, что
$$\int\limits_0^\infty \psi_2^G(\eta)\,d\eta=0.$$

Кроме того, так как $|\psi_2^G(x)|$ убывает несколько медленнее, чем $|\psi_1^G(x)|$, то картинки на рис. 5 и рис. 6 более узкие, чем аналогичные картинки на рис. 7 и 8.

В случае ступенчатой функции (рис. 9)

$$f_2(x) = \begin{cases} 1, & 0 \le x \le 0.5, \\ -1, & 0.5 < x \le 1 \end{cases}$$

картинки для вэйвлетов $\psi_1^G(x)$ и $\psi_2^G(x)$ будут иметь вид, изображенный на рис. 10 и рис. 11. Рис. 10 аналогичен рис. 5 и обладает большей расходимостью. То же самое можно сказать и о рис. 7 и 11.

Рассмотрим далее широко известную функцию — "чертову лестницу" (рис. 12), построенную на основе множества Кантора [3, c. 223; 4]:

$$f_C(x) = \begin{cases} 0.5 f_C(3x), & x \in [0, 1/3), \\ 0.5, & x \in [1/3, 2/3], \\ 0.5 + 0.5 f_C(3x - 2), & x \in (2/3, 1]. \end{cases}$$

Рис. 9. График ступенчатой функции

Рис. 10. Вэйвлет-изображение ступенчатой функции, построенное с помощью $\psi_1^G(x)$

Из приведенной формулы следует, что эта функция самоподобна. Если мы разобьем отрезок [0,1] на три равные части, то $f_C(x)$ — константа на [1/3,2/3], а на отрезках [0,1/3] и [2/3,1] она подобна $f_C(x)$ на всем отрезке [0,1]. Процесс можно рекурсивно продолжать, если разбивать каждый из двух крайних отрезков на три равные части. Свойство самоподобия достаточно хорошо иллюстрируется на рис. 13, где изображено вэйвлет-преобразование $f_C(x)$.

60

40

20

0

На рис. 15 приводится изображение вэйвлет-преобразования функции $f_3(x) = \sin\left(\frac{1}{x-0.5}\right)$, график которой представлен на рис. 14. Наиболее интересным моментом, характеризующим эту функцию, является то, что особенность вида $\sin\left(1/x\right)$ проявляется на картинке вэйвлет-преобразования как возмущение, локализованное не внутри угла -K $s \leqslant t \leqslant K$ s, а внутри параболической области -c(K) $s^2 \leqslant t \leqslant c(K)$ s^2 , где c(K) — константа, определяемая значением K. Это явление было отмечено в монографии [2, с. 195].

В завершение рассмотрим случай практического применения вэйвлет-преобразования для исследования наличия различных веществ в материальных средах [5], осуществляемого с помощью математической обработки процесса поглощения рентгеновских лучей исследуемой средой. В качестве модельной использовалась функция

Рис. 12. График функции "чертова лестница"

Рис. 13. Вэйвлет-изображение функции "чертова лестница", построенное с помощью $\psi_1^G(x)$

$$f_E(x) = \frac{A_1}{\sqrt{2\pi\sigma}} \sin(2r_1 x + \delta_1) \exp\left(-\frac{(x - c_1)^2}{2}\right) + \frac{A_2}{\sqrt{2\pi\sigma}} \sin(2r_2 x + \delta_2) \exp\left(-\frac{(x - c_2)^2}{2}\right).$$

Здесь значения параметров (r_1,c_1) и (r_2,c_2) характеризуют свойства веществ (в данном случае — Zn, Al), присутствующих в среде, и $\sigma=1$. На рис. 16 представлено изображение модуля вэйвлет-преобразования Морле модельной функции, анализ которого дает значения

$$r_1 = 10/3$$
, $c_1 = 4$, $r_2 = 10/9$, $c_2 = 12$.

Рис. 14. График функции $f_3(x)$

Точность полученных значений параметров определяется степенью частотно-пространственной локализации вэйвлет-преобразований.

Рис. 15. Вэйвлет-изображение функции $f_3(x)$, построенное с помощью $\psi_2^G(x)$

Рис. 16. Модуль вэйвлет-преобразования модельной функции $f_E(x)$

4. Выводы. Из приведенных выше результатов следует, что графическое представление вэйвлет-преобразования исследуемой функции способно дать наглядное и информативное описание особенностей этой функции. При этом важную роль играют математические свойства применяемых вэйвлетов, а также правильный выбор и умелое использование возможностей программного обеспечения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Жилейкин Я.М., Осипик Ю.И. О погрешности и алгоритмах численной реализации непрерывных вэйвлетпреобразований // ЖВМ и МФ. 2005. 45, № 12. 2091–2101.
- 2. Дьяконов В.П. MathCad 2001. Специальный справочник. СПб.: Питер, 2002.
- 3. Малла С. Вэйвлеты в обработке сигналов. М.: Мир, 2005.
- 4. Шредер М. Фракталы, хаос, степенные законы. М.; Ижевск: РХD, 2001.
- 5. Funke H., Scheinost A.C., Chukalina M. Wavelet analysis of extended X-ray absorption fine structure data // Phys. Rev. 2005. B 71. 094110, pp. 1–7.

Поступила в редакцию 27.04.2007