УДК 536.75, 538.9

ДВУХСТУПЕНЧАТАЯ МЕТОДИКА РАСЧЕТА СВОБОДНОЙ ЭНЕРГИИ ОБРАЗОВАНИЯ СУБНАНОМЕТРОВЫХ ПОЛОСТЕЙ В ВОДЕ МЕТОДОМ ТЕРМОДИНАМИЧЕСКОГО ИНТЕГРИРОВАНИЯ

 Φ . В. Григорьев¹, А. Н. Романов¹, В. Б. Сулимов¹

В работе представлена оригинальная двухступенчатая схема расчета свободной энергии образования полостей различных объема и формы в воде методом термодинамического интегрирования. Статистические интегралы вычисляются с использованием моделирования ансамбля молекул воды методом Монте-Карло с наложением периодических граничных условий. Реализация предложенной схемы осуществлена в программе CAVE (CAVity free Energy). С целью определения оптимальных параметров моделирования в рамках предложенного алгоритма проведены тестовые расчеты по определению свободной энергии кавитации для сферы, а также для нескольких органических молекул малого и среднего размера. Взаимодействие между молекулами воды описывается в рамках четырехточечной неполяризуемой модели TIP4P. Для тестирования программы CAVE с ее использованием был рассчитан при нормальных условиях ряд термодинамических характеристик TIP4P-модели. Все найденные величины совпадают в пределах погрешностей с известными ранее. Работа выполнена при поддержке РФФИ (код проекта 06–03–33171).

Ключевые слова: свободная энергия сольватации, свободная энергия кавитации, модель воды, моделирование методом Монте-Карло, численное интегрирование.

1. Введение. Расчет свободной энергии сольватации $\Delta G_{\rm solv}$ органических молекул является одной из актуальных задач молекулярного моделирования. При вычислении $\Delta G_{\rm solv}$ часто используют ее разложение на полярную $\Delta G_{\rm пол}$ и неполярную $\Delta G_{\rm непол}$ составляющие [1]. Основной вклад в $\Delta G_{\rm непол}$ обусловлен свободной энергией образования полости $\Delta G_{\rm cav}$, занятой молекулой растворяемого вещества и потому недоступной для молекул воды [2]. Полость взаимодействует с молекулами воды как абсолютно твердая стенка ($U = \infty$ внутри полости, U = 0 — снаружи), а ее форма определяется геометрией и атомарным составом растворяемой молекулы. Наиболее последовательный способ расчета $\Delta G_{\rm solv}$ связан с использованием методов молекулярно-динамического моделирования и моделирования ансамбля молекул воды методом Монте-Карло (МК) с потенциалом, соответствующим растворяемой молекуле.

В существующих программных пакетах, широко используемых для целей молекулярного моделирования, таких, например, как GROMACS [3] и CHARMM [4], при вычислении ΔG_{cav} для расчета энергии взаимодействия между растворяемой молекулой и молекулами воды используется обменная часть U_{exch} межмолекулярного потенциала, что обусловлено проблемами (бесконечные силы и др.), возникающими при моделировании с потенциалом твердой стенки. Однако после вычисления ΔG_{cav} с использованием U_{exch} возникает необходимость корректировки ΔG_{cav} к величине, соответствующей "твердой" полости [5, 6]. Такая корректировка не является однозначной и может приводить к существенной — до 10 % от ΔG_{cav} — погрешности расчета [5].

В нашей работе в рамках метода термодинамического интегрирования [7, 8] предложена оригинальная двухступенчатая схема роста потенциала полости, позволяющая получить пригодный для численного моделирования конечный потенциал, эквивалентный стеночному, и, таким образом, сразу рассчитать величину $\Delta G_{\rm cav}$, соответствующую "твердой" полости. С целью определения оптимальных параметров моделирования проведены тестовые расчеты $\Delta G_{\rm cav}$ для сферы радиусом R = 5 Å, а также для нескольких органических молекул малого и среднего размера. Погрешность $\Delta G_{\rm cav}$ оценивалась по разности изменения абсолютной величины свободной энергии при интегрировании в прямом и обратном направлениях.

Двухступенчатая схема реализована в рамках программы CAVE (CAVity free Energy). Для тестирования программы CAVE с ее использованием были рассчитаны при нормальных условиях ряд термодинамических характеристик ансамбля молекул воды в рамках TIP4P-модели: потенциальная энергия,

¹ Научно-исследовательский вычислительный центр, Московский государственный университет им. М.В. Ломоносова, 119991, Ленинские горы, Москва; e-mail: fedor.grigoriev@gmail.com, vladimir.sulimov@gmail.com

[©] Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

приходящуюся на одну молекулу воды, а также плотность и положения первого, второго и третьего пиков радиальной функции распределения.

2. Двухступенчатая схема расчета ΔG_{cav} . Изменение свободной энергии системы ΔG в результате квазиравновесного появления внешнего потенциала U_{ext} определяется выражением (см. [7, 8])

$$\Delta G = \int_{0}^{1} \langle \partial U_{\text{ext}}(\lambda) / \partial \lambda \rangle_{\lambda} \, d\lambda, \tag{1}$$

где $< \partial U_{\text{ext}}(\lambda) / \partial \lambda >_{\lambda} = \frac{\int \left(\partial U_{\text{ext}}(\lambda) / \partial \lambda \right) \exp\left(-\beta \left(U_{\text{ext}}(\lambda) + U_{\text{ww}} \right) \right)}{\int \limits_{\Gamma} \exp\left(-\beta \left(U_{\text{ext}}(\lambda) + U_{\text{ww}} \right) \right)} -$ средняя потенциальная энергия взаи-

модействия ансамбля молекул воды с внешним потенциалом при заданном λ ; λ — безразмерный параметр, такой, что $0 \leq \lambda \leq 1$; $U_{\text{ext}}(\lambda = 0) = 0$, $U_{\text{ext}}(\lambda = 1) = U_{\text{ext}}$ (в простейшем случае $U_{\text{ext}}(\lambda) = \lambda U_{\text{ext}}$); U_{ww} — потенциальная энергия взаимодействия друг с другом входящих в систему молекул воды и $\beta = \frac{1}{k_B T}$ (k_B — постоянная Больцмана, T — температура). Интегрирование ведется по всему конфигурационному пространству системы Γ .

В рамках двухступенчатой схемы полный потенциал сферической полости $U_{\rm ext} = U_{\rm cav}$ для произвольных λ_1 , λ_2 на траектории интегрирования определяется следующим образом:

$$U_{\text{cav}}(\lambda_1, \lambda_2, R) = U_1(\lambda_1, R) + U_2(\lambda_2, R), \quad U_1(\lambda_1, R) = \lambda_1^2 U_{01} \left(1 - \frac{R}{R_{\text{cav}}}\right) \theta\left(\frac{R}{R_{\text{cav}}}\right),$$

$$U_2(\lambda_2, R) = \lambda_2^2 U_{02} \theta\left(\frac{R}{R_{\text{cav}}}\right), \quad \theta(x) = \begin{cases} 1 & \text{при } 0 \le x \le 1; \\ 0 & \text{при } x > 1. \end{cases}$$
(2)

Здесь R_{cav} — радиус полости, R — расстояние между центром полости и атомом кислорода молекулы воды. Нами выбрана квадратичная зависимость потенциалов U_1 , U_2 от параметров λ_1 , λ_2 , что позволяет обеспечить относительно плавный рост первых производных $\partial U_1(\lambda_1)/\partial \lambda_1$ и $\partial U_2(\lambda_2)/\partial \lambda_2$ с увеличением λ_1 и λ_2 .

Можно показать, что в этом случае выполняется соотношение

$$\Delta G_{\text{cav}} = \int_{0}^{1} \langle \partial U_{1}(\lambda_{1}) / \partial \lambda_{1} \rangle_{\lambda_{1},\lambda_{2}=0} d\lambda_{1} + \int_{0}^{1} \langle \partial U_{2}(\lambda_{2}) / \partial \lambda_{2} \rangle_{\lambda_{2},\lambda_{1}=1} d\lambda_{2}.$$
(3)

Действительно, запишем свободную энергию системы в зависимости от параметров λ_1 и λ_2 следующим образом:

$$G(\lambda_1, \lambda_2) = -\frac{1}{\beta} \ln \int_{\Gamma} \exp\left(-\beta \left[U_{ww} + U_1(\lambda_1) + U_2(\lambda_2)\right]\right).$$

Здесь $U_1(\lambda_1)$ и $U_2(\lambda_2)$ — составляющие потенциала полости, зависимость которых от параметров λ_1 и λ_2 удовлетворяет условиям

$$U_1(\lambda_1 = 1, R) = U_1(R), \quad U_1(\lambda_1 = 0, R) = 0, \quad U_2(\lambda_2 = 1, R) = U_2(R), \quad U_2(\lambda_2 = 0, R) = 0.$$

Тогда свободная энергия образования полости имеет вид $\Delta G_{cav} = G(1,1) - G(0,0)$. Перепишем правую часть этого соотношения в форме $G(1,1) - G(0,0) = \Delta G_1 + \Delta G_2$, где $\Delta G_1 = G(1,0) - G(0,0)$ и $\Delta G_2 = G(1,1) - G(1,0).$ Тогда

$$\begin{split} \Delta G_1 &= G(1,0) - G(0,0) = \int_0^1 \frac{\partial G(1,0)}{\partial \lambda_1} d\lambda_1 = \int_0^1 \frac{\int_{\Gamma} \partial U_1(\lambda_1) / \partial \lambda_1 \exp\left(-\beta \left[U_{ww} + U_1(\lambda_1)\right]\right)}{\int_{\Gamma} \exp\left(-\beta \left[U_{ww} + U_1(\lambda_1)\right]\right)} d\lambda_1 = \\ &= \int_0^1 < \partial U_1(\lambda_1) / \partial \lambda_1 >_{\lambda_1,\lambda_2=0} d\lambda_1, \\ \Delta G_2 &= G(1,1) - G(1,0) = \int_0^1 \frac{\partial G(1,\lambda_2)}{\partial \lambda_2} d\lambda_2 = \int_0^1 \frac{\int_{\Gamma} \partial U_2(\lambda_2) / \partial \lambda_2 \exp\left(-\beta \left[U_{ww} + U_1(1) + U_2(\lambda_2)\right]\right)}{\int_{\Gamma} \exp\left(-\beta \left[U_{ww} + U_1(1) + U_2(\lambda_2)\right]\right)} d\lambda_2 = \\ &= \int_0^1 < \partial U_2(\lambda_2) / \partial \lambda_2 >_{\lambda_2,\lambda_1=1} d\lambda_2. \end{split}$$

Выражения в правой части этих уравнений совпадают с теми, которые требовалось доказать.

В первом слагаемом в (3) угловые скобки означают усреднение по ансамблю при заданном λ_1 ($\lambda_2 = 0$ для всех λ_1), во втором — усреднение по ансамблю при заданном λ_2 ($\lambda_1 = 1$ для всех λ_2).

Графически потенциал вида (2) изображен на рис. 1. В рамках двухступенчатой схемы вначале в моделируемый ансамбль молекул воды вводится треугольный потенциал U₁ с вершиной в центре сферической полости. Наклон от центра обеспечивает при отборе по методу МК преимущество точкам, удаленным от центра сферы, по сравнению с более близкими к нему точками. При этом крутизна наклона, задаваемая параметром U₀₁, не должна быть слишком большой, чтобы избежать образования у границы полости областей с избыточной плотностью, для релаксации которых необходимо будет увеличивать число рассматриваемых при МК-моделировании микросостояний системы. После введения потенциала U_1 ($\lambda_1 = 1$) вводится прямоугольный потенциал U_2 , границы которого совпадают с точками, в которых $U_1 = 0$. Это необходимо для того, чтобы вывести из полости молекулы воды, еще остающиеся в близкой к ее границе области вследствие малости потенциала U₁ вблизи $R = R_{\text{cav}}$. После того как введен потенциал U_2 ($\lambda_2 = 1$), вероятность попадания молекул воды внутрь сферы радиусом $R_{\rm cav}$ должна быть мала настолько, чтобы не влиять на величину $\Delta G_{\rm cav}$.

С целью сокращения числа микросостояний при МКмоделировании шкала интегрирования была выбрана неравномерной: ее шаг минимален в начале интегрирования, а затем дважды удваивается — при $\lambda_1 = 0.3$ и $\lambda_1 = 0.6$. Возможность такого увеличения шага интегрирования связана с уменьшением величины $\langle \partial U_1(\lambda_1)/\partial \lambda_1 \rangle_{\lambda_1,\lambda_2=0}$ с ростом λ_1 . Тестовые расчеты ΔG_{cay} для полостей сферической форми

 λ_1, λ_2 в зависимости от расстояния Rмежду центром полости и атомом кислорода молекулы воды: a) $\lambda_1 < 1$, $\lambda_2 = 0$; b) $\lambda_1 = 1, \lambda_2 = 0$; c) $\lambda_1 = 1, \lambda_2 = 1$

Тестовые расчеты ΔG_{cav} для полостей сферической формы показали, что погрешность, обусловленная введением переменной шкалы, не превышает 0.1 ккал/моль.

Оптимальные величины шага интегрирования $\Delta \lambda$ и параметров U_{01} и U_{02} определены нами по результатам серии расчетов ΔG_{cav} для сфер и ряда тестовых молекул (см. раздел 5). 3. Процедура моделирования ансамбля молекул воды методом Монте-Карло в рамках программы САVE. Средние величины $\langle \partial U_1(\lambda_1)/\partial \lambda_1 \rangle_{\lambda_1,\lambda_2=0}, \langle \partial U_2(\lambda_2)/\partial \lambda_2 \rangle_{\lambda_2,\lambda_1=1}$, входящие в подынтегральное выражение (3), вычислялись методом МК-моделирования. Для проведения моделирования мы использовали программу САVE, разработанную в лаборатории вычислительных систем и прикладных технологий программирования НИВЦ МГУ.

Программа CAVE предназначена для расчета свободной энергии формирования в воде полостей, образованных совокупностью сфер произвольного радиуса. Входные данные программы — максимальное число конфигураций, шаг интегрирования, температура и давление, максимальные величины смещения молекулы воды как целого и вращения, координаты центров сфер, их радиусы и параметры $U_{01}, U_{02},$ координаты атомов молекул воды в ячейке моделирования. Выходные данные — свободная энергия образования полости, координаты атомов молекул воды в ячейке моделирования после проведения моделирования, зависимость подынтегральных выражений в (3) от λ_1, λ_2 . Последовательность действий, выполняемых программой, показана на блок-схеме (рис. 2).

После считывания входных данных начинает выполняться основной цикл программы. Наиболее затратными с точки зрения вычислительных ресурсов являются действия, выполняемые для каждой молекулы воды (выделено на рис. 2 пунктиром). Для каждого микросостояния вычисляются $\partial U_1(\lambda_1)/\partial \lambda_1$ и $\partial U_2(\lambda_2)/\partial \lambda_2$, а затем выполняется усреднение этих величин по ансамблю сгенерированных микросостояний. Предусмотрены два варианта штатного завершения работы программы (окончание цикла на рис. 2): величины λ_1 и λ_2 достигают заданных значений либо число конфигураций превышает максимальное число, заданное пользователем. Программа написана на языке FORTRAN-90.

Программа написана на языке FORTRAN-90. Моделирование проводилось с периодическими граничными условиями при температуре

Рис. 2. Блок-схема программы CAVE

 $T = 25^{\circ}$ С, давлении P = 1 атм и постоянном числе частиц N (NPT-ансамбль). Различные микросостояния ансамбля генерировались посредством случайного вращения молекулы воды как целого вокруг трех эйлеровых углов и ее смещения по трем осям декартовой системы координат. Максимальные значения для смещения и вращения были выбраны 0.1 Åu 10°. Каждые N попыток (N – число молекул воды в ансамбле, $N \sim 1000$) длины L_X , L_Y , L_Z ящика изменялись случайным образом на величины $\pm (\Delta L_X, \Delta L_Y, \Delta L_Z)$ так, чтобы максимальные относительные изменения длин не превышали 0.003, что

соответствовало максимальному изменению объема $\sim 20~{\rm \AA}^3$ для используемых нами ящиков.

В соответствии со схемой Метрополиса [9], для двух микросостояний NPT-ансамбля рассчитывается величина ΔW

$$\Delta W = (E_n - E_0) + P(V_n - V_0) + NRT \ln\left(\frac{V_n}{V_0}\right) - RT \ln\left(\frac{\sin\vartheta_n}{\sin\vartheta_0}\right),\tag{4}$$

где V_0 и V_n — объемы ящика для старого и нового микросостояния, $E_0, E_n, \vartheta_0, \vartheta_n$ — потенциальная энергия и полярный угол Эйлера для микросостояний 0 и *n*. Последнее слагаемое в (4) появляется вследствие зависимости выражения для элементарного объема фазового пространства от полярного угла Эйлера [9, с. 132]. Если $\Delta W \leq 0$ или $\exp(-\Delta W) > r$ $(r - случайное число, 0 \leq r \leq 1)$, новая конфигурация принимается, иначе отвергается. Выбранные нами максимальные значения для вращений, смещений и изменений объема обеспечивало отбор 35 % генерируемых микросостояний, что соответствует эффективному поиску в фазовом пространстве системы [9].

Для описания взаимодействий между молекулами воды мы выбрали жесткую четырехточечную неполяризуемую модель TIP4P [10] с геометрическими параметрами $R_{\rm OH} = 0.9572$ Å, $\alpha({\rm HOH}) = 104.52^{\circ}$, расстояние от атома кислорода до силового центра m, лежащего на биссектрисе угла HOH, $R_{\rm Om} = 0.15$ Å. Потенциальная энергия вычислялась в ккал/моль по формуле

$$U = \sum \frac{332q_i q_j}{r_{ij}} + \sum \frac{A}{r_{\text{OiOj}}^{12}} - \sum \frac{B}{r_{\text{OiOj}}^6}.$$
 (5)

В модели TIP4P заряд на атоме водорода в элементарных единицах равен $q_{\rm H} = 0.52$, на силовом центре $m - q_m = -1.04$ (на атоме кислорода заряда нет). Суммирование в первом слагаемом в (5) выполняется по атомам водорода и центрам m, относящимся к различным молекулам, r_{ij} — расстояние между ними (здесь и далее — в ангстремах). Во втором и третьем слагаемом в (5) суммирование выполняется по атомам кислорода, относящимся к различным молекулам, r_{OiOj} — расстояние между ними, A = 600000 ккал·Å¹²/моль, B = 610 ккал·Å⁶/моль.

Для всех взаимодействий между молекулами воды был выбран радиус обрезания $R_{\rm cut} = 8.5$ Å, что обусловлено двумя соображениями. Во-первых, силовые и геометрические параметры используемой нами TIP4P-модели воды были определены именно при таком обрезании [10]. Во-вторых, потенциал взаимодействия полости с ансамблем молекул воды является короткодействующим и не имеет электростатической составляющей, поэтому обрезание должно повлиять на $\Delta G_{\rm cav}$ весьма слабо. Для проверки последнего утверждения нами был проведен расчет $\Delta G_{\rm cav}$ для сферической полости радиусом R = 4 Åc радиусами обрезания от $R_{\rm cut} = 6 \div 12$ Åc шагом $\Delta R = 1$ Å. Нами не было обнаружено зависимости $\Delta G_{\rm cav}(R_{\rm cut})$, выходящей за пределы статистической погрешности $\delta(\Delta G_{\rm cav})$, которая рассчитывалась как разность между величинами $\Delta G_{\rm cav}$, полученными в результате интегрирования в прямом и обратном направлениях.

Для тестирования программы CAVE с ее использованием нами были рассчитаны при температуре 25° С и давлении 1 атм следующие величины: потенциальная энергия, приходящаюся на одну молекулу воды E = -10.02 ккал/моль, плотность $\rho = 0.0996 \pm 0.004$ g/cm³, а также положения первого, второго и третьего пиков радиальной функции распределения, которые соответствуют -2.75 ± 0.02 Å, 4.45 ± 0.04 Å, 6.7 ± 0.06 Å [10]. Все найденные величины совпадают в пределах погрешностей с приведенными в [10].

Все расчеты были проведены на вычислительных кластерах НИВЦ МГУ им. М. В. Ломоносова [11].

4. Построение потенциала полости для молекул. В соответствии с (2) потенциальная энергия взаимодействия ансамбля N молекул воды с полостью, соответствующей растворяемой молекуле с $N_{\rm at}$ атомами, выражается следующим образом:

$$U_{1} = \sum_{i=1}^{N} \sum_{j=1}^{N_{\text{at}}} U_{01} \left(1 - \frac{R_{ij}}{R_{j\text{cav}}} \right) \theta \left(\frac{R_{ij}}{R_{j\text{cav}}} \right), \quad U_{2} = \sum_{i=1}^{N} \sum_{j=1}^{N_{\text{at}}} U_{02} \theta \left(\frac{R_{ij}}{R_{j\text{cav}}} \right).$$

Здесь R_{ij} — расстояние между атомом кислорода *i*-й молекулы воды и центром *j*-го атома растворяемой молекулы, R_{jcav} — радиус сферы с центром в точке, в которой расположен *j*-й атом.

Величина R_{jcav} определяется равенством $R_{jcav} = R_{sol} + R_j$, где R_{sol} — радиус молекулы растворителя и R_j — радиус *j*-го атома. Величины R_{sol} и R_j зависят от модели растворителя и способа описания взаимодействия между молекулой растворяемого вещества и растворителем. Мы взяли $R_{sol} = 1.4$ Å, что соответствует рекомендованной величине для расчета полостной составляющей ΔG_{solv} в квантовохимических программных комплексах GAMESS [12] и GAUSSIAN [13]. Величины R_j нами определялись в соответствии с процедурой, описанной в [14] и используемой при вычислении электростатической части ΔG_{solv} в рамках обобщенного метода Борна [15]. Существенной частью этой процедуры является использование силового поля MMFF94 [16, 17], в рамках которого каждому атому, входящему в состав органической молекулы, присваивается число от 0 до 99, называемое типом атома. Тип атома определяется порядковым номером элемента в таблице Менделеева, которому этот атом принадлежит, его локальным химическим окружением и возможностью принадлежности атома специальным функциональным группам и ароматической подсистеме. В нашей работе типизация проводилась программой FARS, входящей в состав веб-ориентированной платформы Keenbase [18]. Эта программа разработана Григорьевым Ф.В. и др. и зарегистрирована 31 марта 2006, сертификат РФ № 17. В рамках разработанной в [14] процедуры каждому типу атома I соответствует радиус R_I . Таким образом, $R_{jcav} = R_{sol} + R_{I(j)}$, где I(j) — тип j-го атома.

5. Расчет ΔG_{cav} и определение оптимальных параметров моделирования. При подборе оптимальных параметров для моделирования в рамках двухступенчатой схемы выращивания потенциала полости необходимо принимать во внимание следующие основные источники погрешностей. Во-первых, бесконечный внутри полости потенциал твердой стенки мы заменяем конечным, величина которого характеризуется двумя параметрами — U_{01} и U_{02} . Необходимо установить, в какой мере результат моделирования — свободная энергия образования полости — зависит от них и минимизировать эту зависимость. Во-вторых, вследствие ограниченности рассматриваемых в реальном компьютерном эксперименте числа микросостояний системы, вычисляемая методом термодинамического интегрирования величина отличается от соответствующей квазиравновесному (т.е. бесконечно долгому) выращиванию внешнего потенциала. Возникающая при этом погрешность зависит от шага интегрирования $\Delta \lambda$ и может быть оценена количественно по величине гистерезиса при интегрировании в прямом и обратном направлениях [19–21].

Таким образом, необходимо подобрать параметры U_{01}, U_{02} и $\Delta\lambda$, позволяющие минимизировать погрешности моделирования в условиях реального численного эксперимента. С этой целью нами проведена серия тестовых расчетов ΔG_{cav} для сферической полости радиусом R = 5 Å с различными величинами указанных параметров. На рис. 3 показан результат интегрирования $\Delta G_{\rm cav}(\lambda_1 + \lambda_2)$ вдоль траектории моделирования для различных величин шага интегрирования $\Delta \lambda_1$ на первом этапе (кривая 1: 16×10^{-5} ; кривая 2: 8×10^{-5} ; кривая 3: 4×10^{-5} ; кривая 4: 2×10^{-5} ; кривая 5: 1×10^{-5}). При интегрировании в прямом направлении $\lambda_1 + \lambda_2$ увеличивается, в обратном — уменьшается. В соответствии с (3), вначале λ_1 увеличивается от 0 до 1 при $\lambda_2 = 0$, затем при $\lambda_1 = 1$ значение λ_2 возрастает от 0 до 0.2. Обрезание интегрирования по λ_2 на уровне 0.2 обусловлено резким уменьшением подынтегральной функции в (3) при $\lambda_2 > 0.1;$

Рис. 3. $\Delta G_{\rm cav}(\lambda_1 + \lambda_2)$ (ккал/моль) для различных значений шага интегрирования $\Delta \lambda_1$. Параметры потенциала полости: $U_{01} = 100$ ккал/моль, $U_{02} = 40$ ккал/моль

возникающая при использовании обрезании погрешность, определенная из сравнения результатов расчета с обрезанием и без него, не превосходит 0.1 ккал/моль.

Величина ΔG_{cav} рассчитывается как среднее между величинами результата интегрирования в прямом и обратном направлениях: $\Delta G_{\text{cav}} = \frac{\Delta G_{\text{cav}}(1.2) + \left|\Delta G_{\text{cav}}(0) - \Delta G_{\text{cav}}(1.2)\right|}{2}$, где $\Delta G_{\text{cav}}(0) - \text{результат}$ интегрирования в конечной точке (рис. 3). Погрешность $\delta(\Delta G_{\text{cav}})$, обусловленная отклонением от квазиравновесной траектории выращивания потенциала полости, определяется как половина от величины эффекта гистерезиса: $\delta(\Delta G_{\text{cav}}) = \frac{\Delta G_{\text{cav}}(0)}{2}$.

Видно, что во всех случаях показанные на рис. З зависимости являются нелинейными. На начальном участке скорость роста $\Delta G_{cav}(\lambda_1 + \lambda_2)$ слабо зависит от величины шага интегрирования, однако начиная с $\Delta G_{cav}(\lambda_1 + \lambda_2) \cong 10 \div 15$ ккал/моль скорость роста кривых начинает существенно зависеть от $\Delta \lambda_1$. Зависимости с максимальным шагом интегрирования $\Delta \lambda_1 = 16 \times 10^{-5}$ соответствуют максимальные величины $\Delta G_{cav}(1.2) \cong 25.2$ ккал/моль и погрешности $\delta(\Delta G_{cav}) = 7.6$ ккал/моль. В этом случае траектория интегрирования далека от квазиравновесной. В то же время при минимальной величине $\Delta \lambda_1 = 10^{-5}$ погрешность не превышает 0.1 ккал/моль, что может считаться хорошим результатом [5, 6]. Общее число микросостояний системы, рассмотренных при шаге интегрирования $\Delta \lambda_1 = 10^{-5}$, составляет 6 × 10⁸, время расчета составляет около 100 часов (процессор Opteron с частотой 2.2 ГГц и с оперативной памятью 4 Гб).

Значения ΔG_{cav} и $\delta(\Delta G_{cav})$ для сферы и молекул из тестового набора приведены в таблице. Для проверки зависимости ΔG_{cav} от потенциала полости расчет был проведен при четырех наборах парамет-

ров U_{01} и U_{02} . Параметры потенциала полости для молекул $U_{01} = 100$ ккал/моль и $U_{02} = 20$ ккал/моль. Во всех случаях величины ΔG_{cav} при расчете с минимальным шагом интегрирования $\Delta \lambda_1 = 1 \times 10^{-5}$ совпадают в пределах погрешности. Таким образом, эффект конечной величины потенциала полости в рассмотренном интервале значений U_{01} , U_{02} в пределах погрешности не сказывается на величине свободной энергии формирования полости.

Величины ΔG_{cav} для полостей, соответствующих молекулам из тестового набора, варьируются от 8.9 до 17.7 ккал/моль. Во всех случаях наименьшая погрешность расчета $\delta(\Delta G_{cav})$ наблюдалась при минимальном шаге интегрирования $\Delta \lambda_1 = 1 \times 10^{-5}$. Отметим, что, как следует из приведенных в таблице данных, оценка ΔG_{cav} с точностью $0.1 \div 0.2$ ккал/моль может быть сделана и при относительно большом шаге интегрирования (ср., например, данные по ΔG_{cav} для минимального и максимального $\Delta \lambda_1$). Учитывая, что время моделирования пропорционально $\Delta \lambda_1$, относительно быстрый расчет с большим шагом интегрирования может иметь смысл для предварительной оценки ΔG_{cav} .

		Шаг интегрирования $\Delta\lambda_1 imes 10^5$				
Системы		1	2	4	8	16
	12.5, 5	19.8 ± 0.7	19.2 ± 0.8	19.4 ± 1.2	21.3 ± 2.5	21.1 ± 2.6
Сферы	25, 10	19.3 ± 0.02	18.6 ± 0.5	19.2 ± 0.6	18.5 ± 1.7	19.1 ± 3.1
U_{01}, U_{02}	50, 20	19.4 ± 0.02	19.8 ± 0.5	20.5 ± 0.7	20.2 ± 2.7	18.1 ± 3.5
	100, 40	19.5 ± 0.1	20.1 ± 0.5	19.3 ± 0.3	20.5 ± 1.2	17.2 ± 7.6
Формамид		9.2 ± 0.1	9.3 ± 0.2	9.4 ± 0.3	8.0 ± 0.3	9.4 ± 3.4
Бензол		14.3 ± 0.1	14.3 ± 0.2	14.5 ± 0.2	14.2 ± 1.5	13.4 ± 5.1
Индол		17.7 ± 0.2	18.6 ± 0.4	17.3 ± 1.0	18.9 ± 1.7	19.0 ± 6.0
Этан		8.9 ± 0.1	9.1 ± 0.4	8.3 ± 0.6	9.0 ± 0.4	10.3 ± 2.3
Циклопропан		10.4 ± 0.1	10.6 ± 0.7	10.9 ± 0.3	10.5 ± 1.2	8.7 ± 2.1

Значения $\Delta G_{\rm cav}$ и $\delta(\Delta G_{\rm cav})$ (ккал/моль) для сферы радиусом R=5 Å и полостей молекул в зависимости от шага интегрирования $\Delta \lambda_1$

6. Заключение. В работе рассмотрена двухступенчатая схема расчета свободной энергии образования полостей различных объема и формы в воде ΔG_{cav} методом термодинамического интегрирования. Статистические интегралы вычисляются с использованием моделирования ансамбля молекул воды методом Монте-Карло с наложением периодических граничных условий. Схема основана на использовании комбинации треугольного и прямоугольного потенциалов для адаптации потенциала абсолютно твердой стенки в численном эксперименте. С целью определения оптимальных параметров моделирования в рамках нашего алгоритма проведены тестовые расчеты ΔG_{cav} для сферы радиусом R = 5 Å, а также для ряда органических молекул: формамида, бензола, индола, этана и циклопропана. Достигнутая погрешность расчета ΔG_{cav} при найденных параметрах и числе оцененных в рамках МК моделирования состояний $\cong 10^9$ составила $0.1 \div 0.2$ ккал/моль, или около 1% от ΔG_{cav} .

Реализация предложенной схемы осуществлена в программе CAVE (CAVity free Energy), установленной на кластере НИВЦ МГУ (http://parallel.ru/cluster/). Для тестирования программы CAVE нами были рассчитаны при нормальных условиях ряд термодинамических характеристик TIP4P модели воды: потенциальная энергия, приходящаяся на одну молекулу воды, плотность, положения первого, второго и третьего пиков радиальной функции распределения. Все найденные величины совпадают в пределах погрешностей с данными, приведенными в [10].

СПИСОК ЛИТЕРАТУРЫ

- 1. Tomasi J., Persico M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent // Chem. Rev. 1994. 94, N 7. 2027–2094.
- Gallicchio E., Kubo M.M., Levy R.M. Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation // J. Phys. Chem. B. 2000. 104, N 26. 6271–6285.
- 3. http://www.gromacs.org/

- Brooks B.R., Bruccoleri R., Olafson B., States D., Swaninathan S., Karplus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations // J. Comp. Chem. 1983. 4. 187–217.
- Floris F.M., Selmi M., Tani A., Tomasi J. Free energy and entropy for inserting cavities in water: comparison of Monte Carlo simulation and scaled particle theory result // J. Chem. Phys. 1997. 107, N 16. 6353–6365.
- Alexandrovsky V.V., Vasilevsky M.V., Leontyev I.V., Mazo M.A., Sulimov V.B. The binomial cell model of hydrophobic solvation // J. Phys. Chem. B. 2004. 108, N 40. 15830–15840.
- 7. Kirkwood J.G. Theory of liquids. New York: Gordon and Breach, 1968.
- 8. Chandler D. Interfaces and the driving force of hydrophobic assembly // Nature. 2005. 437, N 24. 640-647.
- 9. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford: Clarendon Press, 1989.
- Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water // J. Chem. Phys. 1983. 79, N 2. 926–935.
- 11. http://parallel.ru/cluster/
- 12. http://www.msg.ameslab.gov/GAMESS/GAMESS.html
- 13. http://www.gaussian.com/
- Bordner A.J., Cavasotto C.N., Abagyan R.A. Accurate transferable model for water, n-octanol and n-hexadecane salvation free energies // J. Phys. Chem. B. 2002. 106, N 42. 11009–11015.
- 15. McCarrick M.A., Kollman P.A. Predicting relative binding affinities of non-peptide HIV protease inhibitors with free energy perturbation calculations // J. Comput. Aided Mol. Des. 1999. 13, N 2. 109–121.
- Halgren T.A. Merck molecular force field I: basis, form, scope, parameterization and performance of MMFF94 // J. of Comput. Chem. 1996. 17, N 5&6. 490–519.
- 17. Григорьев Ф.В., Романов А.Н., Кондакова О.А., Лущекина С.В., Сулимов В.Б. // Алгоритм расстановки силовых параметров на атомах органических молекул и белков в рамках силового поля MMFF94 // Вычислительные методы и программирование. 2006. **7**. 128–136.
- 18. http://www.keenbase.ru
- 19. Jarzynski C. Nonequilibrium equality for free energy differences // Phys. Rev. Lett. 1997. 78, N 14. 2690–2693.
- Oberhofer H., Dellago C., Geissler P.L. Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods? // J. Phys. Chem. B. 2005. 109, N 14. 6902–6915.
- Mu Y., Song X. Calculation of crystal-like interfacial free energies by nonequilibrium work measurements // J. Chem. Phys. 2006. 124, N 3. 0347121–0347125.

Поступила в редакцию 25.09.2007