УДК 537.533.9+51-73

АЛГОРИТМ ДЛЯ ТРЕХМЕРНОГО МОДЕЛИРОВАНИЯ УЛЬТРАРЕЛЯТИВИСТСКИХ ПУЧКОВ

М. А. Боронина¹, В. А. Вшивков¹, Е. Б. Левичев², С. А. Никитин², В. Н. Снытников³

Представлен алгоритм для моделирования эффектов встречи пучков заряженных частиц в трехмерном ультрарелятивистском случае. Предложен алгоритм расчета начальных и граничных условий при введении искусственного потенциала. Приведены результаты тестовых расчетов для задания граничных условий и решение задачи о фокусировке пучка в центре области. Работа выполнена при финансовой поддержке Программы Рособразования "Развитие научного потенциала ВШ" (код проекта РНП 2.2.1.1.1969) и РФФИ (код проекта 05–01–00665).

Ключевые слова: ультрарелятивистские пучки, встречные электрон-позитронные пучки, численные методы, математическое моделирование, суперколлайдер.

1. Введение. Для изучения эффектов встречи электронных и позитронных пучков в новейших проектах международного линейного коллайдера [1] и супер-В фабрики [2] необходима разработка компьютерных программ для исследования трехмерных релятивистских явлений. Ввиду огромной стоимости проектируемых коллайдеров с предельно достижимыми на сегодня плотностями пучков требуется численно воспроизводить динамические коллективные эффекты для миллиарда и более частиц. Это возможно только при суперкомпьютерной параллельной реализации кодов. Однако прежде требуется развитие их элементов — алгоритмов расчета самосогласованного электромагнитного поля системы релятивистских зарядов.

В работе предлагаются такие алгоритмы и приводятся примеры расчетов эффекта встречи пучков в суперколлайдерах. К настоящему времени наиболее развитый подход к решению подобных задач основан на разделении пучков на тонкие слои частиц (слайсы), перпендикулярные оси коллективного движения [3–5]. При ультрарелятивистских скоростях и малом угловом разбросе в пучках поле частицы усиливается в плоскости, перпендикулярной направлению движения, и ослабляется вдоль этого направления в сравнении с нерелятивистским случаем, при этом модельные частицы в слайсе участвуют в создании поля сил, влияющего на частицы другого слайса. В то же время, их влиянием на движение частиц собственно слайса можно пренебречь.

В большинстве случаев такой подход позволяет решать задачу о взаимодействии встречных пучков. Однако сведение этой задачи к двумерной затрудняет учет продольных эффектов в случае встречных пучков со сверхвысокими плотностями. В этих случаях за весьма короткое однопролетное время взаимодействия, зависящее от длины сгустка, становится возможным сильное сжатие (пинчирование) и даже разрушение пучка. Учет этих эффектов важен для исследования взаимодействия пучков при относительно больших углах встречи, которые предполагаются в новейших проектах международного линейного коллайдера и супер-В фабрики. Такой учет возможен в подходе, использующем полностью трехмерный PIC-метод (Particle-In-Cell method, или метод частиц в ячейке). Этот метод, как наиболее близко отвечающий физической формулировке задачи, необходим для проверки уже существующих кодов с присущими им ограничениями слайсовой модели пучка. По мере развития метода вместе с созданием параллельных кодов для суперкомпьютеров возможны его применения для расчета эффектов встречи по большому числу оборотов в циклических коллайдерах.

Основная проблема в решении задач об ультрарелятивистском движении пучков — большие значения релятивистского фактора частиц. Известно, что при движении заряда его электрическое поле в лабораторной системе координат вытягивается в γ раз поперек оси движения и сокращается в γ^2 раз вдоль этой оси. Так, например, при $\gamma \sim 10^3$ отношение поперечного размера к продольному, на которых поля близки по абсолютной величине, составляет $\sim 10^9$. Данное обстоятельство делает 2D-приближение во многих

¹ Институт вычислительной математики и математической геофизики СО РАН, просп. акад. М. А. Лаврентьева, 6, 630090, Новосибирск; e-mail: vsh@ssd.sscc.ru

² Институт ядерной физики СО РАН, просп. акад. М. А. Лаврентьева, 11, 630090, Новосибирск; e-mail: levichev@inp.nsk.su, nikitins@inp.nsk.su

³ Институт катализа им. Г.К. Борескова СО РАН, просп. акад. М. А. Лаврентьева, 5, 630090, Новосибирск; e-mail: snyt@catalysis.nsk.su

[©] Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

случаях оправданным, одновременно являясь очень серьезным препятствием для реализации PIC-кода для трехмерных вычислений.

Целью настоящей работы является создание алгоритмов, позволяющих решать нестационарные задачи о взаимодействии ультрарелятивистских заряженных сгустков во внешних полях в трехмерном случае.

2. Постановка задачи.

2.1. Исходные уравнения. Пусть в параллелепипедальной области $[0, L_1] \times [0, L_2] \times [0, L_3]$ двигаются с релятивистской скоростью пучки заряженных частиц в самосогласованных электромагнитных полях. Каждый пучок характеризуется формой, распределением плотности частиц внутри пучка, линейными размерами и положением в области.

Для описания такого движения можно воспользоваться кинетическим уравнением Власова для функции распределения частиц f (позитронов e^+ или электронов e^-) и системой уравнений Максвелла в гауссовой системе единиц. Взяв за L характерный размер области, за характерную скорость — скорость света $c = 3 \times 10^{10}$ cm/s и задав соотношения на характерные величины $p_0 = m_e c$, $F_0 = \frac{m_e c^2}{L}$, $E_0 = \frac{m_e c^2}{eL}$, $H_0 = \frac{m_e c^2}{L}$, $\rho_0 = \frac{E_0}{L}$ и $\dot{p}_0 = c\rho_0$, можно записать уравнения в безразмерном виле

$$I_0 = \frac{me^2}{eL}$$
, $\rho_0 = \frac{-6}{4\pi L}$ и $j_0 = c\rho_0$, можно записать уравнения в безразмерном виде

$$\frac{\partial f_{e^+,-}}{\partial t} + \boldsymbol{v}_{e^+,-} \frac{\partial f_{e^+,-}}{\partial \boldsymbol{r}} + \boldsymbol{F}_{e^+,-} \frac{\partial f_{e^+,-}}{\partial \boldsymbol{p}} = 0,$$
(1)

ot
$$\boldsymbol{E} = -\frac{\partial \overline{H}}{\partial t}$$
, rot $\boldsymbol{H} = \boldsymbol{j} + \frac{\partial \boldsymbol{E}}{\partial t}$, div $\boldsymbol{E} = (n_{e^+} - n_{e^-})$, div $\boldsymbol{H} = 0$, (2)

где $m{F}_{e^{+,-}} = m{E} + [m{v}_{e^{+,-}}, m{H}]$ — сила Лоренца, действующая на частицу, $m{p}_{e^{+,-}} = rac{m{v}_{e^{+,-}}}{\sqrt{1-v_{e^{+,-}}^2}}$ — импульс

частицы
и $\pmb{\gamma}_{e^{+,-}}=\frac{1}{\sqrt{1-v_{e^{+,-}}^2}}$ — релятивистский фактор частицы.

Входящие в эти уравнения плотность частиц и плотность тока определяются через интегралы по объему от функции распределения частиц:

$$n_{e^+} = \int\limits_{V_0} f_{e^+} \, d\boldsymbol{p}, \quad n_{e^-} = \int\limits_{V_0} f_{e^-} \, d\boldsymbol{p}, \quad \boldsymbol{j} = \int\limits_{V_0} \left(f_{e^+} \boldsymbol{v}_{e^+} - f_{e^-} \boldsymbol{v}_{e^-} \right) d\boldsymbol{p}.$$

В общем случае решить такую задачу можно только численно. Однако в связи с отмеченными во введении свойствами этой задачи в ультрарелятивистском случае численное решение имеет свои особенности. Традиционный путь решения задачи связан с введением измельченной сетки в продольном направлении и увеличением расчетной области в поперечном направлении, но такое увеличение расчетной сетки пропорционально γ и является неприемлемым даже для современных суперкомпьютеров по объему памяти и быстродействию. Сократить объем этой работы можно за счет приближения границы расчетной области достаточно близко к пучку. В этом случае поперечный размер области необходимо сократить примерно в γ и более раз с тем, чтобы она не выходила в волновую зону. Кроме того, возникают трудности в нахождении самосогласованных начальных и граничных условий, а фактически — в постановке вычислительного эксперимента. Рассмотрим последовательно способы преодоления этих трудностей.

2.2. Начальные условия задачи. В начальный момент времени в трехмерном пространстве движутся один или два пучка. Каждый из пучков состоит либо из электронов, либо из позитронов. Пучки характеризуются положением центра пучка (x_0, y_0, z_0) , знаком заряда частиц и импульсом пучка, а также количеством частиц одного сорта. Распределение частиц в пучке задается по нормальному закону с дисперсиями σ_x , σ_y и σ_z в каждом из направлений.

Предполагается, что частицы распределены по скоростям также по нормальному закону с математическим ожиданием v_0 и с соответствующими дисперсиями σ'_x , σ'_y и σ'_z в каждом направлении. Для усиления эффектов встречи используется специальное начальное условие фокусировки (см. раздел 4.2).

В области решения в начальный момент времени задаются электромагнитные поля. Как известно, при движении заряда *q* его электрическое поле в лабораторной системе координат определяется формулой (3), а магнитное поле — формулой (4):

$$\boldsymbol{E} = \frac{1}{\gamma^2} \frac{1}{\left(1 - \beta^2 \sin^2 \theta\right)^{3/2}} \frac{q\boldsymbol{R}}{R^3},\tag{3}$$

$$\overline{H} = [\boldsymbol{v}, \boldsymbol{E}]. \tag{4}$$

Здесь \mathbf{R} — радиус-вектор точки пространства, в которой определяется значение поля, θ — угол между направлением движения заряда и радиус-вектором \mathbf{R} и $\beta = |\mathbf{v}|$.

В связи с этим электрическое и магнитное поля в области решения задаются путем суммирования полей от каждого заряда. На электромагнитное поле, определяемое движением заряда, может накладываться внешнее магнитное поле.

2.3. Граничные условия задачи. Будем считать, что пучок в процессе решения задачи не достигает границ области решения, и поэтому граничные условия для заряженных частиц отсутствуют.

Для электромагнитных полей мы имеем другую ситуацию. Известно, что при движении заряда со скоростью, соответствующей релятивистскому фактору γ , поле сжимается в направлении движения в γ^2 раз и вытягивается в γ раз в поперечном направлении. Отсюда следует, что поля на границах области для частиц с большим γ необходимо задавать с помощью формул (3) и (4). Поскольку частицы движутся, в процессе решения необходимо постоянно пересчитывать граничные условия для электромагнитных полей.

3. Описание алгоритмов.

3.1. Описание метода частиц. Для решения системы уравнений (1), (2) используется метод частиц в ячейках, который является наиболее универсальным методом для решения задач физики бесстолкновительной плазмы, в том числе релятивистской [6–8]. В методе частиц пучок представляется набором достаточно большого числа модельных частиц, траектории которых являются характеристиками кинетического уравнения Власова (1). В методе используются два вида сеток — пространственная сетка для электромагнитных полей, плотностей заряда и токов, а также сетка, связанная с частицами (координаты, импульсы, заряды частиц). Закон, определяющий связь значений пространственной сетки со значениями сетки, связанной с частицами, описывается с помощью метода частиц.

В методе используется схема, предложенная в [9]; в частности, компоненты поля E вычисляются в серединах граней ячеек, образованных пространственной сеткой, а компоненты поля H — в центрах ребер этих ячеек. Значения импульсов частиц, токов и поля H вычисляются в моменты времени $m(\tau + 1/2)$, а значения координат и поле E — в моменты времени $m\tau$. Такое использование сдвинутых друг относительно друга сеток дает второй порядок аппроксимации по времени и по пространству.

Импульсы и координаты частиц определяются формулами

$$\frac{p^{m+1/2} - p^{m-1/2}}{\tau} = q\left(E^m + \left[\frac{v^{m+1/2} - v^{m-1/2}}{2}, H^m\right]\right), \quad \frac{r^{m+1} - r^m}{\tau} = v^{m+1/2}$$

с учетом линейной интерполяции в местоположение частицы.

Электрическое и магнитное поле пересчитывается дважды на полшага вперед по формулам

$$\frac{H^{m+1/2} - H^{m-1/2}}{\tau} = -\operatorname{rot}_{h} E^{m}, \quad \frac{E^{m+1} - E^{m}}{\tau} = j^{m+1/2} + \operatorname{rot}_{h} H^{m+1/2},$$

$$\operatorname{rge} \operatorname{rot}_{h} H = \begin{vmatrix} \frac{Hz_{i,k,l-1/2} - Hz_{i,k-1,l-1/2}}{h_{y}} - \frac{Hy_{i,k-1/2,l} - Hy_{i,k-1/2,l-1}}{h_{z}} \\ \frac{Hx_{i-1/2,k,l} - Hx_{i-1/2,k,l-1}}{h_{z}} - \frac{Hz_{i,k,l-1/2} - Hz_{i-1,k,l-1/2}}{h_{x}} \\ \frac{Hy_{i,k-1/2,l} - Hy_{i-1,k-1/2,l}}{h_{x}} - \frac{Hx_{i-1/2,k,l} - Hx_{i-1/2,k-1,l}}{h_{y}} \end{vmatrix},$$

$$\operatorname{rot}_{h} E = \begin{vmatrix} \frac{Ez_{i-1/2,k+1/2,l} - Ez_{i-1/2,k-1/2,l}}{h_{y}} - \frac{Ey_{i-1/2,k,l+1/2} - Ey_{i-1/2,k,l-1/2}}{h_{z}} \\ \frac{Ex_{i,k-1/2,l+1/2} - Ex_{i,k-1/2,l-1/2}}{h_{z}} - \frac{Ez_{i+1/2,k-1/2,l} - Ez_{i-1/2,k-1/2,l}}{h_{x}} \end{vmatrix}.$$

По известным значениям электромагнитных полей с учетом координат частиц определяются значения токов.

В случае передвижения частицы из точки (x_H, y_H, z_H) в точку (x_K, y_K, z_K) внутри одной ячейки вклады токов в ближайшие к центру четыре узла смещенных друг относительно друга сеток определяются по формулам из [10, 11]. Если частица пересекает границу ячейки, то ее путь разбивается на две части, а формулы используются для каждой из частей. Такой метод вычисления токов позволяет автоматически удовлетворить разностному уравнению неразрывности и, следовательно, точно выполнить разностный закон Гаусса. Это значительно уменьшает ошибки аппроксимации и делает алгоритм более устойчивым.

3.2. Реализация начальных условий. Обычно электрическое поле в любой точке области определяется как суперпозиция полей от всех одиночных зарядов. При числе частиц, достигающем десятков и сотен миллиардов, для вычисления значений полей в узлах расчетной сетки потребуется огромная вычислительная работа. Объем этой работы может быть сокращен, если прямое суммирование заменить на интегрирование плотности зарядов и их токов в узлах сетки, введя "крупные" частицы. На основе этих "крупных" частиц прямым суммированием их электрических потенциалов можно определить распределение электрического потенциала всей системы зарядов по границе, расположенной в ближней зоне [12]. Дифференцируя потенциал, можно получить электромагнитные поля.

Исходя из вида электрического поля движущегося заряда в начальный момент времени (3), по аналогии можно ввести специальный потенциал Φ_p , создаваемый этим зарядом, следующим способом:

$$E_x = -\frac{\partial \Phi_p}{\partial x}, \quad E_y = -\frac{\partial \Phi_p}{\partial y}, \quad E_z = -\frac{1}{\gamma^2} \frac{\partial \Phi_p}{\partial z}.$$
 (5)

Легко проверить, что при таком определении введенный потенциал будет удовлетворять уравнению

$$\frac{\partial^2 \Phi_p}{\partial x^2} + \frac{\partial^2 \Phi_p}{\partial y^2} + \frac{1}{\gamma^2} \frac{\partial^2 \Phi_p}{\partial z^2} = -4\pi \delta(x, y, z)q.$$

Заметим, что в нулевой момент времени в лабораторной системе координат [13] этому же уравнению удовлетворяет потенциал движущегося заряда $\phi(x, y, z, t) = \frac{\gamma q}{\sqrt{x^2 + y^2 + \gamma^2 (z - vt)^2}}$.

Следовательно, по принципу суперпозиции для потенциала пучка Φ , состоящего из одинаковых зарядов q, летящих вдоль оси z с одинаковыми значениями релятивистского фактора γ , для плотности частиц n можно записать уравнение

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{1}{\gamma^2} \frac{\partial^2 \Phi}{\partial z^2} = -4\pi n(x, y, z)q.$$
(6)

Следует отметить, что задание таких начальных условий не учитывает запаздывания потенциала [14], так как заменять сумму дельта-функций от каждого заряда на плотность частиц в области не совсем корректно. Однако ввиду нахождения границ в ближней зоне эффектом запаздывания можно пренебречь.

Уравнение (6) решается методом верхней релаксации с учетом граничных условий, описанных в следующем разделе статьи.

Далее через потенциал Φ рассчитывается электрическое поле пучка по уравнениям (5), а магнитное находится по формуле (4).

3.3. Реализация граничных условий. Другой особенностью метода является вывод граничных условий для потенциала и полей. Пусть ρ — плотность заряда. Значения потенциала на границе для уравнения (6) в точке (x_0, y_0, z_0) задаются выражениями

$$\Phi(x_0, y_0, z_0) = \gamma \int_V \frac{\rho(x, y, z)}{\left((x - x_0)^2 + (y - y_0)^2 + \gamma^2 (z - z_0)^2\right)^{1/2}} \, dx \, dy \, dz,$$

$$E(x_0, y_0, z_0) = \gamma \int_V \frac{\rho(x, y, z)}{\left((x - x_0)^2 + (y - y_0)^2 + \gamma^2 (z - z_0)^2\right)^{3/2}} \, dx \, dy \, dz.$$

Заметим, что в подынтегральном выражении имеется особенность в точке (x_0, y_0, z_0) , и при больших значениях релятивистского фактора погрешность в ее окрестности сильно возрастает за счет разности $(z - z_0)$; таким образом, в данном случае простое суммирование неприемлемо. Чтобы избежать этой трудности, интеграл разбивается на два. Первый интеграл содержит числитель, стремящийся к нулю при стремящихся к (x_0, y_0, z_0) координатах, а часть второго можно вычислить аналитически. Имеем

$$\Phi(x_0, y_0, z_0) = \gamma \int_V \frac{\rho(x, y, z) - \rho(x, y, z_0)}{\left((x - x_0)^2 + (y - y_0)^2 + \gamma^2(z - z_0)^2\right)^{1/2}} \, dx \, dy \, dz + + \frac{1}{\gamma} \int_0^{L_x} \int_0^{L_y} \left(\ln\left(\gamma(L_z - z_0) + \sqrt{(x - x_0)^2 + (y - y_0)^2 + \gamma^2(L_z - z_0)^2}\right) - (7) - \ln\left(-\gamma z_0 + \sqrt{x_0^2 + y_0^2 + \gamma^2 z_0^2}\right) \right) \rho(x, y, z_0) \, dx \, dy.$$

Условия для электрических полей пучка в точках границы (x_0, y_0, z_0) на каждом шаге по времени вычисляются аналогичным интегрированием:

$$\begin{split} E_{x_n}(x_0, y_0, z_0) &= \gamma \int_V \frac{\left(\rho(x, y, z) - \rho(x, y, z_0)\right)(x - x_0)}{\left((x - x_0)^2 + (y - y_0)^2 + \gamma^2(z - z_0)^2\right)^{3/2}} \, dx \, dy \, dz + \\ &+ 2 \int_0^{L_x} \int_0^{L_y} \frac{\rho(x, y, z_0)(x - x_0)}{(x - x_0)^2 + (y - y_0)^2} \, dx \, dy, \\ E_{y_n}(x_0, y_0, z_0) &= \gamma \int_V \frac{\left(\rho(x, y, z) - \rho(x, y, z_0)\right)(y - y_0)}{\left((x - x_0)^2 + (y - y_0)^2 + \gamma^2(z - z_0)^2\right)^{3/2}} \, dx \, dy \, dz + \\ &+ 2 \int_0^{L_x} \int_0^{L_y} \frac{\rho(x, y, z_0)(y - y_0)}{(x - x_0)^2 + (y - y_0)^2} \, dx \, dy, \end{split}$$
(8)
$$E_{z_n}(x_0, y_0, z_0) &= \gamma \int_V \frac{\left(\rho(x, y, z) - \rho(x, y, z_0)\right)(z - z_0)}{\left((x - x_0)^2 + (y - y_0)^2 + \gamma^2(z - z_0)^2\right)^{3/2}} \, dx \, dy \, dz + \gamma \int_0^{L_x} \int_0^{L_y} \left(\frac{1}{\gamma^2 \sqrt{x_0^2 + y_0^2 + \gamma^2 z_0^2}} - \right) \\ &- \frac{1}{\gamma^2 \sqrt{(x - x_0)^2 + (y - y_0)^2 + \gamma^2(z - z_0)^2}} \right) \rho(x, y, z_0) \, dx \, dy. \end{split}$$

Магнитное поле на границе рассчитывается по формуле (4).

4. Результаты численных экспериментов.

4.1. Пролет круглого пучка. Представленный алгоритм тестировался на задаче пролета круглого ка народ общает. В этом сличео

пучка через область. В этом случае поля должны двигаться вместе с пучком; следовательно, плотность электромагнитной энергии должна переноситься, но не изменять свою амплитуду. На рис. 1 показана плотность энергии пучка, заряд Q которого в начальный и конечный ($t_k = 0.5$) моменты времени равен 10^9 , а релятивистский фактор частиц γ равен 10^4 . Из рисунка видно, что при движении форма импульса сохраняется; это свидетельствует о правильности задания начальных и гранич-

Рис. 1. Сохранение профиля плотности энергии со временем

ных условий, а также самой схемы пересчета электромагнитных полей.

4.2. Фокусирующиеся пучки. Кроме того, алгоритм тестировался на задаче фокусировки пучков моноэнергетических частиц в центре расчетной области. Предполагается, что координаты частиц в плоскости кроссовера, который совпадает с местом пересечения центров встречных сгустков IP (Interaction Point), распределены по нормальному закону вдоль каждого из направлений. Плоскость кроссовера —

плоскость минимального размера пучка, перпендикулярная оси движения и проходящая через центр области. Плотность распределения частиц по координатам в момент прохождения частицей плоскости кроссовера записывается в виде

$$\rho_c(x,y,z) = \frac{1}{2\pi^{3/2} (\sigma_x^* \sigma_y^* \sigma_z)^{1/2}} \exp\left\{-\frac{1}{2} \left[\frac{(x-x_c)^2}{(\sigma_x^*)^2} + \frac{(y-y_c)^2}{(\sigma_y^*)^2} + \frac{(z-z_c)^2}{\sigma_z^2}\right]\right\},$$

где (x_c, y_c, z_c) — центр пучка, совпадающий с центром области, а характерные размеры сгустка по горизонтали (σ_x^*) и по вертикали (σ_y^*) определяются через значения в месте встречи (IP) амплитудных функций $\beta_x^* = \beta_x(z_c), \ \beta_y^* = \beta_y(z_c)$ (квадраты огибающей пучка по двум поперечным направлениям в теории электронной оптики), а также через величины фазовых объемов $\varepsilon_x, \ \varepsilon_y$ [15]: $\sigma_x^* = \sqrt{\beta_x^* \varepsilon_x}, \ \sigma_y^* = \sqrt{\beta_y^* \varepsilon_y}$.

Считается, что продольное распределение не возмущенного внешними силами пучка с размером σ_z никак не меняется во всей области. В тестовых расчетах использовались следующие значения параметров [16]: $\beta_x^* = \beta_y^* = 0.1$ см, $\varepsilon_x = \varepsilon_y = 5 \times 10^{-9}$ см, $\sigma_z = 0.1$ см и $\sigma_x^* = \sigma_y^* = 2.24 \times 10^{-5}$ см.

Плотность распределения по поперечным импульсам p_x и p_y также полагается гауссовой и в плоскости кроссовера имеет вид

$$\rho_p(p_x, p_y) = \frac{1}{2\pi\sigma_{px}^*\sigma_{py}^*} \exp\left\{\frac{1}{2}\left[\frac{p_x^2}{(\sigma_{px}^*)^2} + \frac{p_y^2}{(\sigma_{py}^*)^2}\right]\right\},\,$$

где

$$x' = \left(\frac{\sigma_{px}}{p}\right)^* \approx \left(\frac{\sigma_{px}}{p_z}\right)^* = \sqrt{\frac{\varepsilon_x}{\beta_x^*}}, \quad y' = \left(\frac{\sigma_{px}}{p_z}\right)^* = \sqrt{\frac{\varepsilon_x}{\beta_x^*}}, \quad p^2 = p_x^2 + p_y^2 + p_z^2$$

Для простоты предполагается, что "на старте" сгусток имеет нулевой разброс импульсов в продольном направлении: $\sigma_{pz} = 0$. В плоскости кроссовера, выделенной как плоскость симметрии, полная плотность распределения частиц в фазовом пространстве выражается произведением приведенных функций плотности по координатам и импульсам $\rho|_{IP} = \rho_c \rho_p$. В других поперечных сечениях поперечные координаты и импульсы уже нельзя рассматривать как независимые величины. В начальный момент времени центр гауссового сгустка смещен относительно центра области, имеющего координату z_c вдоль продольной оси. Так как частицы движутся к плоскости фокуса в центре области в пустом промежутке (в отсутствие встречного пучка), то преобразование вектора координат и углов наклона траекторий из сечения с коор-

динатой z в сечение с координатой z_c задается по правилу $\begin{vmatrix} x' \\ y \\ y' \end{vmatrix}_{IP} = \begin{vmatrix} 1 & x & -z_c & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & z - z_c \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x' \\ y \\ y' \end{vmatrix}$

Чтобы найти функцию распределения в поперечном фазовом пространстве для произвольного сечения области по z = const, надо в выражении для $\rho |_{IP}$ выразить компоненты вектора $(x, x', y, y') |_{IP}$ через компоненты вектора (x, x', y, y') на основе указанного преобразования. В результате в продольном сечении пучок будет напоминать горизонтальную каплю, летящую к месту встречи (IP) острым концом. В этих расчетах длина расчетной области в поперечном направлении $L_x = L_y = 10^{-2}$ см и в продольном — $L_z = 1.5$ см.

Число модельных частиц в пучках одинаково ($J_1 = J_2 = 10^5$); релятивистские факторы всех частиц также одинаковы: $\gamma = 6850$. Число узлов сетки в поперечном направлении $N_x = N_y = 60, N_z = 120$. Временной шаг $\tau = 0.0001$.

Контроль точности решения проводится путем отслеживания изменения энергии в безразмерных переменных. Поскольку поток электромагнитной энергии через границы области отсутствует, полная энергия должна сохраняться. На рис. 2 нижний график представляет собой относитель-

Рис. 2. Изменение видов энергии со временем

ное изменение энергии электромагнитных полей $\Delta W_F(t) = \frac{W_F(t) - W_{F_0}}{W_{F_0}}, W_F(t) = \int\limits_V \frac{E^2(t) + H^2(t)}{8\pi},$

верхний график — относительное изменение кинетической энергии системы

$$\Delta W_K(t) = \frac{W_K(t) - W_{K_0}}{W_{K_0}}, \quad W_K(t) = E(t) - E_0 = m_e \sum_i \left(\sqrt{1 + |p_i|^2} - 1\right)$$

в безразмерных переменных. Средний график отражает относительное изменение полной энергии системы $\Delta W(t) = \Delta W_K(t) + \frac{W_F(t) - W_{F_0}}{W_{K_0}}$. В данной формуле энергия нормирована на начальную кинетическую энергию пучка, которая является характерной величиной для всего процесса.

Как следует из рисунка, в процессе движения частиц происходит обмен энергией между частицами и электромагнитными полями, причем полная энергия хорошо сохраняется. Приведенные результаты показывают хорошую сходимость метода при измельчении сетки и увеличении количества модельных частиц. Уменьшение временно́го шага практически не влияет на результаты, так как шаг выбирается из условия устойчивости и является уже достаточно мелким.

На рис. 3 представлены результаты расчетов с вышеприведенными параметрами в момент времени T = 2 для пучков с безразмерными величинами зарядов $Q = 2.63 \times 10^7$ и $Q = 2.63 \times 10^{11}$. В целом формы пучков достаточно похожи, однако на нижнем рисунке имеются небольшие колебания координат в поперечной плоскости. Такие колебания появляются начиная со значений заряда 10^{10} при $\gamma = 6850$ и становятся все более значительными при увеличении заряда. Необходимы дополнительные исследования, чтобы установить, имеют ли данные колебания физическую природу, связанную с действием индуцированного сжатием пучка продольного электрического поля, или же это слоистый эффект численной неустойчивости.

Рис. 3. Влияние собственного заряда на динамику пучка

Рис. 4. Влияние встречного пучка

4.3. Влияние встречного пучка. Сравнивалось поведение пучка электронов при наличии и отсутствии пучка позитронов, летящего навстречу, но также фокусирующегося в центре области. Параметры использовались те же, безразмерный заряд пробного пучка $Q_1 = 2.63 \times 10^{11}$, а безразмерный заряд встречного $Q_2 = -1.31 \times 10^{11}$, размеры пучков и релятивистские факторы указаны выше. На рис. 4 показаны результаты численных экспериментов для такой постановки задачи в момент времени T = 2.5.

Из этих экспериментов отчетливо видно фокусирующее влияние второго пучка. В указанный момент времени второй пучок уже примерно наполовину прошел через первый, поэтому центральная часть первого пучка имеет меньшие поперечные размеры за счет сил притяжения между электронами и позитронами. Расчет показывает, что в дальнейшие моменты времени происходит полное разрушение структуры обоих пучков [17] в соответствии с критерием этого явления, рассмотренным в [18].

Приведенные результаты указывают на хорошую работоспособность предложенного алгоритма и пригодность для моделирования эффектов встречи электронных и позитронных пучков. 5. Выводы. Впервые создан алгоритм для решения задач взаимодействия встречных пучков заряженных частиц с достаточно большими релятивистскими факторами (10^3 и более). Алгоритм учитывает трехмерность задачи и основан на двух допущениях. Одно из них — приближение границы достаточно близко к пучку, при этом поперечный размер области сокращается примерно в γ раз, что позволяет значительно уменьшить затраты памяти и времени счета. Второе допущение возникает из необходимости быстрого задания граничных условий. Оно заключается в представлении пучка модельных частиц в качестве некоторой непрерывной среды, при этом вводится искусственный потенциал и решается модифицированное уравнение Пуассона. Особенностью задания граничных условий является разбиение интегралов от плотности для уменьшения порядка возникающей особенности, а следовательно, и для повышения качества расчетов. Результаты численных экспериментов подтвердили правильность выбранной модели и работоспособность алгоритма.

СПИСОК ЛИТЕРАТУРЫ

- 1. Yokoya K. ILC conceptual design and R/D status // Report at the 8th ICFA (International Committee for Future Accelerator) Seminar on Future Perspectives in High Energy Physics. Daegu, Korea, 2005.
- 2. *Raimondi P.* Towards higher luminosities in B and Phi factories // Report at the 2nd Workshop on Super B Factory. Laboratori Nazionale di Frascati, Instituto Nazionale di Fisica Nucleare. Rome, 2006.
- 3. Yokoya K. Computer simulation code for the beam-beam interaction in linear colliders // Report N 85-9. High Energy Accelerator Research Organization (KEK). Tsukuba, Japan, 1985.
- Anderson E.B., Banks T.I., Rogers J.T. ODYSSEUS: A dynamic strong-strong beam-beam simulation for storage rings // Proc. of the Int. Comput. Accelerator Physics Conf. Monterey, California, USA, 1998.
- 5. Schulte D. Study of electromagnetic and hadronic background in the interaction region of the Tesla collider // Tesla Reports. Hamburg, 1997.
- 6. Хокни Р., Иствуд Дж. Численное моделирование методом частиц. М.: Мир, 1987.
- 7. Бедселл Ч., Ленгдон А. Физика плазмы и численное моделирование. М.: Атомиздат, 1985.
- 8. Березин Ю.А., Вшивков В.А. Метод частиц в динамике разреженной плазмы. Новосибирск: Наука, 1980.
- Langdon A.B., Lasinski B.F. Electromagnetic and relativistic plasma simulation models // Meth. Comput. Phys. 1976. 16. 327–366.
- 10. Вшивков В.А., Вшивков К.В., Дудникова Г.И. Алгоритмы решения задачи взаимодействия лазерного импульса с плазмой // Вычислительные технологии. 2001. 6, № 2. 47–63.
- Villancenor J., Buneman O. Rigorous charge conservation for local electromagnetic field solvers // Comp. Phys. Comm. 1992. 69. 306–316.
- 12. Кукшева Э.А., Снытников В.Н. Параллельный алгоритм и программа Кеу 7D для решения нестационарных трехмерных задач гравитационной физики // Вычислительные технологии. 2007. **12**, № 1. 35–44.
- 13. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 2. Теория поля. М.: Наука, 1988.
- Takayama K. A new method for the potential of a 3-dimensional nonuniform charge distribution // Lettere Al Nuovo Cimento. 1982. 34, N 7. 192–196.
- 15. Chao A., Tigner M. Handbook of accelerator physics and engineering. Singapore: World Scientific, 1999.
- 16. Raimondi P. Exotic approach to a super B-factory // Report at the Super B-Factory Workshop. Hawaii, 2005.
- 17. Boronina M.A, Levichev E.B., Nikitin S.A., Snytnikov V.N., Vshivkov V.A. 3D PIC method development for simulation of beam-beam effects in supercolliders // Proc. of the Particle Accelerator Conf. Albuquerque, New Mexico, USA, 2007. 3366–3368.
- 18. Chen P., Yokoya K. Disruption effects from the interaction of round e^+e^- beams // Physical Review D. 1988. **38**, N 3. 987–1000.

Поступила в редакцию 12.11.2007