
Numerical Methods and Programming, 2009, Vol. 10 (http://num-meth.srcc.msu.ru) 415UDC 512.54; 519.1; 530.145SYMMETRIES, GAUGE INVARIANCE AND QUANTIZATIONIN DISCRETE MODELS1V.V. Kornyak2Di�erent aspects of discrete symmetry analysis in application to deterministic and non-deterministiclattice models are considered. One of the main tools for our study are programs written in C. Inthe case of deterministic dynamical systems, such as cellular automata, the non-trivial connectionsbetween the lattice symmetries and dynamics are discussed. In particular, we show that the formationof moving soliton-like structures | analogs of \spaceships" in cellular automata or \generalizedcoherent states" in quantum physics | results from the existence of a non-trivial symmetry group.In the case of mesoscopic lattice models, we apply some algorithms exploiting the symmetries ofthe models to compute microcanonical partition functions and to search phase transitions. We alsoconsider the gauge invariance in discrete dynamical systems and its connection with quantization.We propose a constructive approach to introduce quantum structures in discrete systems based on�nite gauge groups. In this approach, quantization can be interpreted as the introduction of a gaugeconnection of a special kind. We illustrate our approach to quantization by a simple model andpropose its generalization.Keywords: symmetries of discrete systems, gauge principle, quantization.1. Introduction. Discrete systems are widespread in applications. In particular, many nanostructures aresymmetric discrete formations (see, e.g., Fig. 1).
Fig. 1. Symmetries of 3-valent (hydro)carbon nanostructures:a) Tetrahedrane C4H4 (G = Sym(4), Gloc = D6 �= Sym(3); b) Cubane C8H8 (G =Z2� Sym(4), Gloc = D6;c) Dodecahedrane C20H20 (G =Z2�Alt(5), Gloc = D6; d) Fullerene C60 (G =Z2�Alt(5), Gloc =Z2;e) Toric graphene n �m (G = Dn � D2n, Gloc =Z2; n; m!1, G = (Z�Z)oD6, Gloc = D6From a fundamental point of view, there are many philosophical and physical arguments that discreteness ismore suitable for describing physics at small distances than the continuity that arises only as an approximationor as a logical limit in considering large collections of discrete structures. In 1912 Henri Poincar�e wrote [1]:\We now wonder not only whether the di�erential equations of dynamics must be modi�ed, but whether thelaws of motion can still be expressed by means of di�erential equations : : : . It is being asked whether it is notnecessary to introduce discontinuities into the natural laws, not apparent ones but essential ones". Since thattime, the number and weights of arguments supporting similar views have increased considerably.In this paper we consider deterministic and non-deterministic dynamical systems with non-trivial symme-tries de�ned on discrete spaces and evolving in discrete time. As a tool for our study, we are developing programsin C based on computer algebra and computational group theory methods [2].1 This work was supported by the RFBR grant 07{01{00660 and the grant 1027.2008.2 from the Ministry ofEducation and Science of the Russian Federation.2 Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980, Dubna, Russia;e-mail: kornyak@jinr.ruc Science Research Computing Center, Moscow State University



416 Numerical Methods and Programming, 2009, Vol. 10 (http://num-meth.srcc.msu.ru)2. Basic constituents of discrete models. In this paper we consider the following constructions thatform a basis for all types of dynamical systems:1) a space X is a k-valent graph with the symmetry group G = Aut(X) | space symmetries;2) the vertices x of X take values in a set � with the symmetry group � 6 Sym(�) | internal symmetries;3) the states of the whole system are functions �(x) 2 �X ;4) we de�ne the whole system symmetry groupsW | unifying the space G and the internal � symmetries |as the equivalence classes of split group extensions [3] of the form1! �X !W ! G! 1 ; (1)5) action of the group W splits the set of states �X into orbits of di�erent sizes: �X = Fi Oi;6) evolution proceeds in discrete time t 2Z= f: : : ;�1; 0; 1; : : :g ;7) dynamics is determined by some evolution rule connecting the current state �t(x) of the system with itsprehistory �t�1(x), �t�2(x); �t�3(x); : : : :For models with locally de�ned evolution rules (such as, e.g., cellular automata or Ising model), the groupof local symmetries Gloc is essential and is de�ned as a stabilizer of a vertex x in the space group G: g 2Gloc = StabG(x) means xg = x: Local rules are de�ned on orbits of Gloc on edges from the neighborhoods of thepoints x: Figure 1 shows the symmetry groups G and Gloc 6 G for some carbon and hydrocarbon molecules.Let us give an explicit description of the whole symmetry group W: The equivalence classes in (1) are deter-mined by arbitrary antihomomorphisms � : G! G. The term \antihomomorphism"means that �(a)�(b) = �(ba):The equivalence is described by arbitrary function � : G! G: The explicit formulas for the main group opera-tions | action3 on �X , multiplication, and inversion | are�(x)��(x); a� = ��x�(a)���x�(a)� ;��(x); a� ��(x); b�= ���(x�(ab)�1�(b)�(a)���x�(ab)�1�(b)�; ab� ;��(x); a��1 = ���x�(a�1)�1�(a)�1�(a)��1; a�1� :Here ��(x); a� 2 W with �(x) 2 �X and a 2 G, etc. Note that the standard direct and wreath products areobtained from this general construction by choosing �(a) = 1 and �(a) = a�1; respectively. As to the arbitraryfunction �; the choices �(a) = 1 and �(a) = a�1; respectively, are generally used in the literature. Thus, theaction and multiplication take the following forms for the direct product �X � G: �(x)��(x); a� = �(x)�(x) ,��(x); a� ��(x); b� = ��(x)�(x); ab� and for the wreath product � oX G: �(x)��(x); a� = �(xa�1)�(xa�1) ,��(x); a� ��(x); b� = ��(x)�(xa); ab�.3. Deterministic and non-deterministic dynamics. The evolution rule of a deterministic (or causal)dynamical system is a functional relation. This means that the current state is a function of the prehistory:�t(x) = F ��t�1(x); �t�2(x); �t�3(x); : : :) : (2)Cellular automaton is a typical example of a deterministic dynamical system. The causality imposes severerestrictions on the system dynamics [4]. In particular, for the �rst-order4 functional relations:| dynamical trajectories pass group orbits in a non-decreasing order of orbit sizes,| periodic trajectories lie within orbits of the same size.A mesoscopic lattice model is a type of non-deterministic dynamical systems. This is a special case of aMarkov chain. In a mesoscopic lattice model, the transition from one state to any other is possible with aprobability controlled by a Hamiltonian.A quantum system is another important type of non-deterministic dynamical systems. The probabilities oftransitions between states are expressed in terms of complex-valued transition amplitudes.4. Soliton-like structures in deterministic dynamics. For deterministic dynamics, the recurrence ofdynamical trajectory to the same group orbit is typical. Moreover, if the symmetry group W splits the stateset �X into �nite number of orbits (this is the case for all systems we consider here), then after a lapse of time3We write group actions on the right. This, more intuitive, convention is adopted in both GAP andMAGMA | the most widespread computer algebra systems with advanced facilities for computational grouptheory.4This means that (2) takes the form �t(x) = F ��t�1(x)�:



Numerical Methods and Programming, 2009, Vol. 10 (http://num-meth.srcc.msu.ru) 417any trajectory comes inevitably to a cycle over some �nite sequence of orbits. This just means the formation ofsoliton-like structures. Namely, let us consider the evolution�t0(x)! �t1(x) = At1t0��t0(x)� : (3)If the states at the moments t0 and t1 belong to the same orbit : �t0(x) 2 Oi and �t0(x) 2 Oi; Oi � �X , thenevolution (3) can be replaced by the group action �t1(x) = �t0(x)w, w 2 W , i.e., the initial state �t0(x) isreproduced after some \movement" in the space �X :Several examples (including continuous cases) of cycles over group orbits:| running waves �(x� vt) in mathematical physics | Galilei group;| \generalized coherent states" in quantum physics | unitary representations of Lie groups;| \spaceships" in cellular automata | lattice symmetries.
Fig. 2. Example of soliton-like structureFigure 2 illustrates the formation of \glider" | one of the \spaceships" in Conway's cellular automaton\Game of Life". \Glider" in Conway's \Life"is a cycle in two orbits of the square lattice symmetry group (thesemidirect product of 2D translations and dihedral group D8): the con�gurations '3 and '4 are obtained from'1 and '2, respectively, by the same combination of downward shift, 90� clockwise rotation and reection withrespect to the vertical.

Fig. 3. Ising model on dodecahedron. Microcanonical distribution and \convex intruders"indicating mesoscopic phase transitions5. Mesoscopic lattice models. The discrete symmetry analysis simpli�es the manipulations with micro-canonical ensembles and the search of phase transitions. This allows one to reveal subtle details in the behaviorof mesoscopic models: in addition to distinct \convex intruder" denoted by A (a criterion of phase transitionadopted in mesoscopy), in Fig. 3 we see that the computation detects a subtle \intruder" B.6. Discrete gauge principle. In fact, the gauge principle expresses the general idea that any observabledata can be presented in di�erent \frames" at di�erent points and there should be some way to compare thesedata. At the set-theoretic level suitable for both the discrete and the continuous cases, the main concepts of thegauge principle can be reduced to the following elements:| a set X, space or space-time;| a set �, local states;| the set �X of �-valued functions on X, the set of states of dynamical systems;



418 Numerical Methods and Programming, 2009, Vol. 10 (http://num-meth.srcc.msu.ru)| a group W 6 Sym(�X ) acting transitively on �X , symmetries of the system;| identi�cation of data describing a dynamical system makes sense only modulo symmetries from W ;| having no a priori connection between data from �X at di�erent points x and y in time and space, weimpose this connection (or parallel transport [5]) explicitly as W -valued functions on edges of an abstract graph:P (x; y) 2W , &(y) = �(x)P (x; y); the connection P (x; y) has the obvious property P (y; x) = P (x; y)�1;| a connection eP (x; y) is called trivial if it can be expressed in terms of a function on the vertices of agraph: eP (x; y) = r(x)�1r(y), r(x); r(y) 2W ;| invariance with respect to gauge symmetries depending on time or space u(x) 2 W; u(y) 2 W leads tothe transformation rule for connection: P (x; y)! u(x)�1P (x; y)u(y);| the curvature of a connection P (x; y) is de�ned as the conjugacy class of the holonomy along a cycleof a graph: P (x1; x2; : : : ; xk) = P (x1; x2)P (x2; x3) : : : P (xk; x1) (the conjugacy means that P 0(x1; : : : ; xk) �u�1P (x1; : : : ; xk)u for any u 2W ); the curvature of trivial connection is obviously trivial: eP (x1; : : : ; xk) � 1;
Fig. 4. Aharonov{Bohm e�ect. Magnetic ux is con�ned withinthe perfectly shielded solenoid; interference pattern is shifted inspite of absence of electromagnetic forces acting on the particles

| the gauge principle does not tell usanything about the evolution of the connec-tion itself, so a gauge invariant relation de-scribing the dynamics of connection (gauge�eld) should be added.Standard continuous gauge theoriescan easily be deduced from the above de-scription by expansion of the parallel trans-port P (x; y) for two closely situated points xand x+�x in continuous space with takinginto account that P (x; x) = 1. This leadsto the introduction of a Lie algebra valued1-form A: P (x; x + �x) � 1 + A�x. Thecurvature 2-form F = dA+[A ^A] is inter-preted as a physical strength �eld. Finally,one should write dynamical equations forthe gauge �elds. The most important exam-ple of gauge dynamics is the Yang{Mills theory with the equations of motiondF + [A ^ F ] = 0 ; (4)d ? F + [A ^ ?F ] = 0 :Note that (4) is a priori (empty) statement called the Bianci identity. Note also that the Yang{Mills equationsfor the Abelian gauge group U(1) are the same as Maxwell's equations.7. Gauge connection and quantization.The Aharonov{Bohm e�ect (Fig. 4) is one of the most strikingillustrations of interplay between quantum behavior and gauge connection. Charged particles moving throughthe region containing a perfectly shielded thin solenoid produce di�erent interference patterns on a screen,depending on whether the solenoid is turned on or o�. There is no electromagnetic force acting on the particles,but the working solenoid produces the U(1)-connection, adding or subtracting the phases of the particles andthus changing the interference pattern.In the discrete time, Feynman's path amplitude [6] is decomposed into the product of elements of thefundamental representation of the group � = U(1):AU(1) = exp(iS) = exp�i Z Ldt� �! eiL0;1 : : : eiLt�1;t : : :eiLT�1;T : (5)By the notation Lt�1;t we emphasize that the Lagrangian is in fact a function de�ned on pairs of points (graphedges) | this is compatible with physics where the typical Lagrangians depend on the �rst-order derivatives.Thus, the expression P (t� 1; t) = eiLt�1;t 2 U(1) can be interpreted as the U(1)-parallel transport. A naturalgeneralization of this is to suppose that| the group � may di�er from U(1),| the dimension of the unitary representation �(�) may di�er from 1.We can introduce a quantum mechanical description of a discrete system interpreting the states � 2 � asbasis elements of a Hilbert space 	. This allows one to describe the statistics of observations of �;s in terms ofthe inner product in 	.



Numerical Methods and Programming, 2009, Vol. 10 (http://num-meth.srcc.msu.ru) 419Now let us replace expression (5) for Feynman's path amplitude by the following parallel transport alongthe path A�(�) = �(�0;1) : : : �(�t�1;t) : : : �(�T�1;T ) . Here �t�1;t are the elements of a �nite group � | we shallcall � a quantizing group | and � is a unitary representation of � on the space 	.Recall that all linear representations of �nite groups are (equivalent to) unitary and all their charactersand eigenvalues are elements of the ring A of algebraic integers5 [7]. It is not di�cult to show [8] that algebraicintegers are su�cient for all our computations (except for normalization of probabilities requiring the quotient�eld of the ring A ). With our approach, thus, the quantization becomes a completely constructive procedure.On the other hand, the standard Feynman's quantization can be approximated within our approach by takingthe 1-dimensional representations of su�ciently large �nite groups.8. A simple model induced by a free particle. In quantum mechanics, as is clear from the nevervanishing expression exp� i~ S� for the path amplitude, the transitions from one to any other state are possiblein principle. However, we shall consider a computationally more tractable models with restricted sets of possibletransitions.Let us consider quantization of a free particle moving in one dimension. Such a particle is described by theLagrangian L = m _x2=2: Keeping only the transitions to the closest points in the discretized space, we come tothe following rule for the one-time-step transition amplitudes:eimf(x+1)�xg2=(2~) = eim=(2~),eim(x�x)2=(2~) = 1,eimf(x�1)�xg2=(2~) = eim=(2~):In other words, we have the evolution rule as a U(1)-valued function R de�ned on pairs of points (graph edges).Symbolically: R(x! x) = 1 2 U(1) ;R(x! x� 1) = R(x! x+ 1) = w = eim=(2~) 2 U(1) : (6)Now let us assume that w in (6) is an element of some representation of a �nite group: w = �(�),� 2 � = f0 = 1; : : : ; M�1g.Rearranging multinomial coe�cients (trinomial in this particular case) it is not di�cult to write the sumamplitude over all paths of the form (0; 0) �! (x; t): Atx(w) = tX�=0 � !�� � x2 �!�� + x2 �! t!� !(t� � )! w� . Notethat x must lie in the limits determined by t: x 2 [�t; t] :One of the most expressive peculiarities of quantum-mechanical behavior is the destructive interference |the cancellation of non-zero amplitudes attached to di�erent paths converging to the same point. By construc-tion, the sum of amplitudes in our model is a function A(w) depending on distribution of sources of the particles,their initial phases, gauge �elds acting along the paths, restrictions | like, e.g., \slits" | imposed on possiblepaths, etc. In the case of the one-dimensional representation, the function A(w) is a polynomial with algebraicinteger coe�cients and w is a root of unity. Thus, the condition for destructive interference can be expressedby the system of polynomial equations: A(w) = 0 and wM = 1. To be speci�c, let us consider the cyclic group� =ZM = f0; : : : ; k; : : : ; M�1g. Any of itsM irreducible representations takes the form �(k) = wk, where wis one of the M th roots of unity. For simplicity, let w be the primitive root : w = e2�i=M :Figure 5 shows all possible transitions (with their amplitudes) from the point x in three time steps. Wesee that the polynomial A3�1 = 3w+ 3w3 = 3w(w2 + 1) contains the cyclotomic polynomial �4(w) = w2 + 1 asa factor. The smallest group associated to �4(w) and hence providing the destructive interference is Z4. Thus,Z4 is the natural quantizing group for the model under consideration.Figure 6 shows interference patterns | normalized squared amplitudes (\probabilities") | from two sourcesplaced in the positions x = �4 and x = 4 for 20 time steps. The left and right graphs show interference patternwhen sources are in the same (�� = 0) and in the opposite (�� = �) phases, respectively.9. Local quantum models on regular graphs. The above model | with quantum transitions allowed5The ring A consists of the roots of monic polynomials with integer coe�cients [3].
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Fig. 5. Amplitudes for all possible paths in three time stepsFig. 6. Group Z4. Interference from two sources at points �4 and 4. Number of time steps T = 20.Phase di�erences �� = �4 � ��4 between sources are 0 and �Fig. 7 Fig. 8only within the neighborhood of a vertex of a 1-dimensional lattice | can easily be generalized to anarbitrary regular graph. Our de�nition of a local quan-tum model on k-valent graph includes the following.1. The space X = fx1; : : : ; xNg is a k�valent graph.2. The set of local transitions Ei = fe0i; e1i; : : : ; ekigis the set of the k edges emi = (xi ! xmi) adjacent to thevertex xi; this set is completed by the edge e0i = (xi !xi). 3. We assume that the space symmetry groupG = Aut(X) acts transitively on the set fE1; : : : ; ENg.4. Gloc = StabG(xi) 6 G is a stabilizer of xi.5. 
i = f!0;i; !1;i; : : : ; !h;ig is the set of orbits of Gi on Ei.6. the quantizing group � is a �nite group: � = f0; : : : ; M�1g.7. the evolution rule R is a function on Ei with its values in some representation �(�). The rule R prescribes�(�)-weights to the one-time-step transitions from xi to the elements of the neighborhood of xi. From thesymmetry considerations, R must be a function on orbits from 
i, i.e., R(emig) = R(emi) for g 2 Gloc.To illustrate these constructions, let us consider the local quantum model on the graph of buckyball. Theincarnations of this 3-valent graph include in particular:| the Caley graph of the icosahedral group Alt(5) (in mathematics);| the molecule C60 (in carbon chemistry).Here the space X = fx1; : : : ; x60g has the shape of Fig. 7 and its symmetry group is G = Aut(X) =Z2�Alt(5).The set of local transitions takes the form Ei = fe0i; e1i; e2i; e3ig, where e0i = (xi ! xi), e1i = (xi ! x1i),e2i = (xi ! x2i), e3i = (xi ! x3i) in accordance with Fig. 8. The stabilizer of xi is Gloc = StabG(xi) = Z2.The set of orbits of Gloc on Ei contains the three orbits: 
i = �!0i = fe0ig ; !1i = fe1i; e2ig ; !2i = fe3ig	, i.e.,the stabilizer does not move the edges (xi ! xi) and (xi ! x3i) and swaps (xi ! x1i) and (xi ! x2i): Thisasymmetry results from the di�erent roles the edges play in the structure of the buckyball: (xi ! x1i) and(xi ! x2i) are edges of a pentagon adjacent to xi, whereas (xi ! x3i) separates two hexagons; in the carbonmolecule C60, the edge (xi ! x3i) corresponds to the double bond, whereas the others are the single bonds.The evolution rule takes the formR(xi ! xi) = �(�0); R(xi ! x1i) = R(xi ! x2i) = �(�1); R(xi ! x3i) = �(�2);where �0, �1, and �2 2 �. If we take a one-dimensional representation and move �0 | using the gaugeinvariance | to the identity element of �, we see that the rule R depends on the two elements v = �(�1) andw = �(�2). Thus, the amplitudes in the quantum model on the buckyball take the form A(v; w), dependingon two roots of unity. To search nontrivial quantizing groups, one should check (by, e.g., the Gr�obner basis



Numerical Methods and Programming, 2009, Vol. 10 (http://num-meth.srcc.msu.ru) 421computation) the compatibility of the system of polynomial equations A(v; w) = �i(v) = �j(w) = 0, where�i(v) and �j(w) are cyclotomic polynomials.10. Summary. We proposed an algorithmic approach based on discrete symmetry analysis and imple-mented in C for the construction and investigation of discrete dynamical models | deterministic, mesoscopic,and quantum. In particular, our approach is applicable to the simulation of nanostructures with nontrivialsymmetry properties. Important examples of such nanostructures are (hydro)carbon molecules, like graphenes,fullerenes, etc.We constructed a family of groups unifying the space and internal symmetries in a natural way. Thisconstruction generalizes the standard direct and wreath products.We demonstrated that soliton-likemoving structures, like \spaceships" in cellular automata, arise inevitablyin the deterministic dynamical systems whose symmetry group splits the set of states into a �nite number ofgroup orbits.We formulated the gauge principle in the form most suitable for discrete and �nite systems. We alsoproposed a method based on the introduction of gauge connection of a special kind for quantizing discretesystems and constructed simple models for studying the properties of the suggested quantization. We hope thatthe discrete and �nite background allowing comprehensive study may lead to a deeper understanding of thequantum behavior and its connection with symmetries of systems. To study more complicated models, we aredeveloping C programs based on computer algebra and computational group theory methods.References1.Poincar�e H. Mathematics and science: last essays. New York: Dover, 1963. 75{76.2.Holt D.F., Eick B., O'Brien E.A. Handbook of computational group theory. London: Chapman & Hall/CRC Press,2005.3.Kirillov A.A. Elements of the theory of representations. Berlin{New York: Springer-Verlag, 1976.4.Kornyak V.V. Discrete dynamical systems with symmetries: computer analysis // Programming and Computer Soft-ware. 2008. 34, N 2. 84{94.5.Oeckl R. Discrete gauge theory (from lattices to TQPT). London: Imperial College Press, 2005.6.Feynman R.P., Hibbs A.R. Quantum mechanics and path integrals. New-York: McGraw-Hill, 1965.7.Serre J.-P. Linear representations of �nite groups. Berlin: Springer-Verlag, 1977.8.Kornyak V.V. Discrete dynamics: gauge invariance and quantization // Lecture Notes in Computer Science. Berlin:Springer-Verlag, 2009. 5743. 180{194 (http://arxiv.org/abs/0906.0718). Received November 7, 2009


