УДК 533.6

МОДЕЛИРОВАНИЕ ДИНАМИКИ ГАЗА ПРИ ПОМОЩИ РЕШЕТОЧНОГО МЕТОДА БОЛЬЦМАНА

Н. Е. Грачев¹, А. В. Дмитриев¹, Д. С. Сенин¹

Рассмотрена программная реализация алгоритма моделирования движения однокомпонентного однофазного вязкого газа в трехмерном пространстве, основанного на применении решеточных уравнений Больцмана. Указаны преимущества алгоритма по сравнению с подходом к описанию динамики газа на основе уравнений Навье–Стокса. Проведена верификация созданных программных средств. Численные результаты сопоставлены с аналитическими зависимостями.

Ключевые слова: газодинамика, численное моделирование, решеточный метод Больцмана.

Введение. Решеточный метод Больцмана (РМБ, lattice Boltzmann method) [1] был разработан для моделирования динамики жидкости и газа. Суть метода заключается в том, что исследуемая область разбивается на конечное число ячеек, между которыми на каждом шаге по времени происходит перенос вещества в соответствии с заданным видом кинетического уравнения и интеграла столкновений.

Экспериментально и теоретически доказано, что метод решеточных уравнений Больцмана хорошо описывает динамику жидкости и газа для широкого класса задач и согласуется с уравнениями Навье– Стокса [2]. Этот метод естественным образом распараллеливается на большое количество вычислительных ядер и позволяет применять графические процессоры (GPU — Graphics Processing Unit) и технологию CUDA (Compute Unified Device Architecture) компании NVIDIA, что значительно повышает эффективность вычислений — ускорение достигает до 10–100 раз по сравнению с алгоритмами, основанными на решении уравнений Навье–Стокса методами конечных элементов/объемов (например, пакет программ ANSYS Fluent) и на применении кластерных систем. Кроме того, программные реализации на основе GPU фирмы NVIDIA компактны, энергоэффективны и недороги.

Недостатки метода РМБ проявляются при высоких скоростях потока — более 0.3 М, где М — число Маха; однако для устранения этих недостатков были предложены несколько подходов [3, 4].

В настоящей статье описывается программно реализованный алгоритм моделирования динамики газа при помощи РМБ [11–14], позволяющий моделировать процессы переноса газа для таких прикладных задач, как аэродинамика автомобилей, самолетов, высокоскоростных поездов, расчеты вентиляции сооружений, вычисление аэродинамики ветряных электростанций и др. Созданный программный комплекс обладает рядом преимуществ: высокой скоростью расчета, возможностью моделирования задач со сложными граничными условиями (в том числе и в случае пористых материалов), автоматической генерацией вычислительной сетки, распараллеливанием алгоритма на тысячи процессоров без существенной потери производительности, возможностью расчетов задач с 10¹⁰ ячеек и более.

1. Алгоритм. Рассмотрим основные особенности решеточного метода Больцмана для моделирования задач газодинамики. Пусть расчетная область разбита на одинаковые квадратные (кубические) ячейки. Теперь допустим, что вещество из узлов ячеек может перемещаться только в соседние узлы по выделенным направлениям. На рис. 1а представлен шаблон D2Q9 с 9 скоростями в двумерном пространстве, а на рис. 16 представлен шаблон D3Q19 с 19 скоростями в трехмерном пространстве. Именно такие шаблоны выбраны для программной реализации как обеспечивающие достаточную точность и стабильность расчетов эволюции системы в рассматриваемом диапазоне параметров.

Можно записать решеточное уравнение Больцмана в виде [5, 6]

$$f_a(x + e_a\delta t, t + \delta t) = f_a(x, t) + \Omega_a(x, t),$$

где f_a — одночастичная функция распределения для выбранного дискретного направления a, e_a — дискретная скорость, δt — шаг по времени и $\Omega_a(x,t)$ — интеграл столкновений. Такие макроскопические параметры, как плотность ρ и средняя скорость u, вычисляются через одночастичную функцию распределения следующим образом: $\rho = \sum_a f_a$ и $\rho u = \sum_a e_a f_a$.

¹ООО "Интровижн", Ленинские горы, Научный парк МГУ, вл. 1, стр. 77, 119992, Москва; Н.Е. Грачев, ген. директор, e-mail: grachev@introvision.ru; А.В. Дмитриев, вед. разработчик, e-mail: dmitriev@introvision.ru; Д.С. Сенин, вед. разработчик, e-mail: senin@introvision.ru

[©] Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

Самый простой и вместе с тем подходящий для описания движения газа вид интеграла столкновений описывает релаксацию системы к равновесному состоянию [7, 8]

$$\Omega_a = \frac{1}{\tau} \left(f_a^{\,\text{eq}} - f_a \right). \tag{1}$$

Здесь f_a^{eq} — равновесная одночастичная функция распределения и τ — безразмерный параметр релаксации. В модели считается, что в каждой локальной области частицы подчиняются распределению Максвелла. Следовательно, для невысоких значений сред-

Рис. 1. Решетка D2Q9 (a), решетка D3Q19 (б)

них скоростей (
 $u \ll c_s,$ где c_s- скорость звука) можно записать приближение
 [9]

$$f_a^{\text{eq}} \approx \rho w_a \left[1 + \frac{(e_a \, u)}{c_s^2} + \frac{(e_a \, u)^2}{2c_s^4} - \frac{u^2}{2c_s^2} + \frac{(e_a \, u)^3}{2c_s^6} - \frac{(e_a \, u)u^2}{2c_s^4} \right] + o(u^4)$$

где w_a — весовые коэффициенты, значение которых зависит от типа решетки. Так, для решетки D2Q9: $w_9 = \frac{4}{9}, w_1 = \ldots = w_4 = \frac{1}{9}, w_5 = \ldots = w_8 = \frac{1}{36},$ для решетки D3Q19: $w_0 = \frac{1}{3}, w_1 = \ldots = w_6 = \frac{1}{18},$ $w_7 = \ldots = w_{18} = \frac{1}{36}.$ Равновесные функции распределения подчиняются закону сохранения массы и импульса: $\rho = \sum_a f_a^{eq}$ и $\rho u = \sum_a e_a f_a^{eq}.$

Рассмотренная модель качественно описывает течения при малых значениях числа Маха M \ll 1, при этом кинематическая вязкость определяется через время релаксации τ : $\nu = (\tau - 0.5)c_s^2 \delta t$.

Граничные условия в виде непроницаемых стенок без проскальзывания моделируются отражением скорости налетающей частицы. Для этого на этапе расчета эволюции системы с использованием интеграла столкновений в каждой ячейке границы твердого тела принимается условие $f_a^*(x) = f_{\overline{a}}(x)$, где $x \in \Gamma$, Γ – граница твердого тела, f_a^* – одночастичная функция распределения после отражения от непроницаемой стенки и $f_{\overline{a}}$ – одночастичная функция распределения для дискретного направления, обратного e_a .

2. Верификация алгоритма. Стационарное плоское течение Пуазейля. Рассмотрим течение вязкой жидкости между плоскостями, которые находятся на расстоянии *H* друг от друга. Скорость течения вблизи этих плоскостей равняется нулю вследствие прилипания, посередине скорость принимает максимальное значение. Движение жидкости происходит под действием перепада давления в направлении оси *OX* (рис. 2). Цветовая шкала соответствует абсолютному значению средней скорости (красный цвет — точки с самой высокой средней скоростью для рассматриваемой решетки, синий цвет — с самой низкой). В каждом поперечном сечении давление можно рассматривать как постоянное.

Из-за трения от одного слоя жидкости к другому передается касательное напряжение, которое пропорционально $\frac{du}{dy}$, где u — скорость течения. Следовательно, движение каждого элемента жидкости изменяется вследствие перепада давления и замедляется вследствие напряжения сдвига, вызванного трением: $2\mu \frac{du}{dy} dx = -2y \frac{dP}{dx} dx$, где μ — коэффициент динамической вязкости, u(y) — скорость течения жидкости и P(x) — давление. Следовательно, можно записать, что

$$u(y) = -\frac{dP}{dx} \frac{1}{2\mu} y(H - y).$$
(2)

Для того чтобы проверить правильность созданной модели течения с использованием решеточного метода Больцмана, было проведено несколько численных экспериментов по расчету стационарных плоских течений Пуазейля с заданными значениями давления на границах рассматриваемой области. Функция распределения была инициализирована равновесными значениями в момент t = 0.

Расчеты были выполнены для различных значений давления на границах и для различных вязкостей. Результаты, представленные на рис. 3 и в табл. 1, достаточно хорошо совпадают с теоретическими значениями, полученными по формуле (2).

Рис. 2. Стационарное плоское течение Пуазейля

Рис. 3. Графики теоретической (кривая 1) и экспериментальной (точки 2) зависимости скорости течения от координаты вдоль ос
и ${\cal O}Y$ для случая стационарного плоского течения Пуазейля при $\tau = 1. \Lambda$ 0.01

т,	$\Delta \rho$	_	0.0	Л	

Таблица 1

Параметры численного эксперимента		Среднекв. откл. от теоретич. кривой	Среднекв. откл. от теоретич. кривой в процентах от макс. скорости для данного эксперимента
$\tau = 1$	$\Delta \rho = 0.01$	1.0663E-04	0.22%
$\tau = 2$	$\Delta \rho = 0.01$	2.9119E-05	0.18%
$\tau = 3$	$\Delta \rho = 0.01$	1.5183E-05	0.16%
$\tau = 1$	$\Delta \rho = 0.005$	4.3866E-05	0.18%
$\tau = 1$	$\Delta \rho = 0.0025$	2.0257 E-05	0.17%

Результаты сопоставления численной модели течения с теоретической зависимостью для случая стационарного плоского течения Пуазейля

3. Верификация алгоритма. Аэродинамическое сопротивление цилиндра. Рассмотрим задачу обтекания цилиндра радиуса R (рис. 4 и 5). Пусть скорость набегающего потока равна U_{∞} , а коэффициент динамической вязкости равен η .

Рис. 4. Поле средних скоростей при численном расчете задачи обтекания цилиндра. Размеры сетки 1000 × 500. Параметры модели: $\tau = 5$, $U_{\infty} = 0.01$, радиус цилиндра $R_c = 20$

Рис. 5. Поле средних скоростей при численном расчете турбулентного течения в задаче обтекания цилиндра. Размеры сетки 1000 × 1000. Параметры модели: $\tau = 1, U_{\infty} = 0.1$, радиус цилиндра $R_c = 50$

При небольших скоростях сопротивление среды обусловлено, в основном, силами трения. Стокс определил, что сила лобового сопротивления тела для малых чисел Рейнольдса Re < 1 пропорциональна коэффициенту динамической вязкости η , скорости набегающего потока U_{∞} и характерному размеру тела L:

$$F_{\rm TP} = k_{\rm popm} \eta U_{\infty} L. \tag{3}$$

Важно, что расстояние от тела до границ (например, стенок сосуда) должно быть много больше размеров самого тела. Коэффициент пропорциональности $k_{\phi opm}$ зависит от формы тела.

Для верификации алгоритма был зафиксирован радиус цилиндра $R_c = 10$. Размер решетки был выбран 500 × 250. Это позволило достаточно быстро получать данные численного эксперимента и свести влияние краевых эффектов к минимуму. Для различных чисел Рейнольдса $\operatorname{Re} = \frac{U_{\infty}L}{\nu}$ по формуле (3) был произведен расчет теоретических значений лобового сопротивления цилиндра, после чего полученные значения были нормированы на максимальное из них.

Для численного расчета силы лобового сопротивления в созданной модели использовался второй закон Ньютона в импульсной форме. Для стенки, расположенной посередине между ячейками с координатами x_f и $x_b = x_f + e_a \delta_t$, действующая на нее сила выражается формулой

$$dF = \frac{1}{\delta_t} \sum_{a \neq 0} \left[e_a f_a(x_f) - e_{\overline{a}} f_{\overline{a}}(x_f + e_a \delta_t) \right],$$

где $e_{\overline{a}} = -e_a$ [10]. Тогда полная сила лобового сопротивления принимает вид

$$F = \frac{1}{\delta_t} \sum_{x_f \in \Gamma} \sum_{a \neq 0} \left[e_a f_a(x_f) - e_{\overline{a}} f_{\overline{a}} \left(x_f + e_a \delta_t \right) \right],$$

где Г — множество граничных точек объекта, для которого производится расчет. Как и в случае с теоретическими значениями, была произведена нормировка полученных значений.

Таблица 2 Результаты сопоставления экспериментального численного расчета лобового сопротивления цилиндра и его теоретических значений, полученных с помощью формулы Стокса

Re	Численный эксперимент, $R_c = 10$	Теоретический расчет по формуле Стокса
0.13	1.00	1.00
0.17	0.79	0.78
0.20	0.68	0.67
0.24	0.56	0.56
0.30	0.45	0.44
0.40	0.33	0.33
0.60	0.21	0.22

Рис. 6. График сопоставления нормированных данных, полученных с помощью численного эксперимента (точки 2) и с помощью формулы Стокса (кривая 1) для малых чисел Re < 1

Полученные результаты представлены в табл. 2 и на рис. 6. Следует отметить хорошее согласование значений численного эксперимента с теоретической кривой.

4. Выводы. В настоящей статье решеточный метод Больцмана использовался для моделирования однокомпонентных однофазных вязких течений. Был рассмотрен один из вариантов реализации данного метода с интегралом столкновений в виде (3). Для верификации полученной модели был проведен ряд численных экспериментов. На примере моделирования стационарного плоского течения Пуазейля и расчета лобового сопротивления цилиндра было показано хорошее согласование теоретических и расчетных данных.

Таким образом, полученная модель может быть использована для расчета ряда характеристик вязких однокомпонентных однофазных течений.

- 1. Kadanoff L. On two levels // Phys. Today. 1986. 39. 7–9.
- 2. Chen S., Doolen G.D. Lattice Boltzmann method for fluid flows // Annu. Rev. Fluid Mech. 1998. 30. 329-364.
- 3. Sun C. Lattice-Boltzmann models for high speed flows // Phys. Rev. E. 1998. 58, N 6. 7283-7287.
- Chen F., Xu A., Zhang G., Li Y. Three-dimensional lattice Boltzmann model for high-speed compressible flows // Commun. Theor. Phys. 2010. 54, N 6. 1121–1128.
- 5. He X., Luo L.-S. Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation // Phys. Rev. E. 1997. 56, N 6. 6811–6817.
- Begum R., Basit M.A. Lattice Boltzmann method and its applications to fluid flow problems // European J. of Scientific Research. 2008. 22, N 2. 216–231.
- Bhatnagar P., Gross E.P., Krook M.K. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems // Phys. Rev. 1954. 94, N 3. 511–525.
- Qian Y.H., d'Humières D., Lallemand P. Lattice BGK models for Navier–Stokes equation // Europhysics Letters. 1992. 17, N 6. 479–484.
- 9. Aidun C.K., Clausen J.R. Lattice-Boltzmann method for complex flows // Annu. Rev. Fluid Mech. 2010. 42. 439-472.
- Mei R., Yu D., Shyy W., Luo L.-S. Force evaluation in the lattice Boltzmann method involving curved geometry // Phys. Rev. E. 2002. 65, N 4. 041203/1–14.
- 11. Estallo S.I. Computational gas dynamics with the lattice Boltzmann method: preconditioning and boundary conditions. University of Zaragoza. Zaragoza, 2008.
- 12. Mattila K. Implementation techniques for the lattice Boltzmann method. University of Jyväskylä. Jyväskylä, 2010.
- 13. Wolf-Gladrow D.A. Lattice-gas cellular automata and lattice Boltzmann models. An introduction. Berlin: Springer, 2005.
- 14. Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford: Clarendon Press, 2001.

Поступила в редакцию 22.03.2011