УДК 519.6

ПРИМЕНЕНИЕ МЕТОДА ТРАЕКТОРИЙ И МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ В МОДЕЛИРОВАНИИ ДВИЖЕНИЯ ВЯЗКОГО ТЕПЛОПРОВОДНОГО ГАЗА

В.В. Шайдуров¹, Г.И. Щепановская¹, М.В. Якубович¹

Предложен алгоритм численного решения модифицированных уравнений Навье–Стокса для одномерного движения вязкого теплопроводного газа. Проведены тестовые расчеты. Реализована задача о распространении теплового импульса в газе. Апробированная численная модель использована для изучения одномерных геодинамических процессов.

Ключевые слова: уравнения Навье–Стокса, вязкий теплопроводный газ, численное моделирование, метод траекторий, метод конечных элементов.

Введение. Система нестационарных одномерных уравнений Навье–Стокса для вязкого теплопроводного газа включает в себя три дифференциальных уравнения в частных производных, вытекающих из законов сохранения массы, количества движения и внутренней энергии газа. Предложенная в настоящей статье замена искомых функций в уравнениях неразрывности и внутренней энергии переводит закон сохранения массы и полной энергии из нормы пространства L_1 в норму гильбертова пространства L_2 . Впоследствии это значительно упрощает обоснование устойчивости и сходимости [1, 2]. Дискретизация по пространству модифицированных уравнений Навье–Стокса осуществляется методом конечных элементов.

Для аппроксимации полной производной по времени каждого уравнения системы используется метод траекторий, который заключается в аппроксимации субстанциональной производной с помощью разностной производной назад по времени вдоль траектории движения частицы. Метод траекторий впервые появился в работах французских и американских ученых для аппроксимации уравнений Навье–Стокса для вязкой несжимаемой жидкости с первым порядком аппроксимации. Особенно теоретическое и практическое развитие метод получил для одного уравнения переноса массы [3]. Для решения систем алгебраических уравнений используется многосеточный метод с внешними итерациями по нелинейности.

Модификация уравнений Навье–Стокса обеспечивает повышение точности приближенного решения. Как следует из тестовых расчетов, абсолютная погрешность приближенного решения уменьшается в разы по сравнению с аналогичной погрешностью для немодифицированных уравнений, при этом разностная схема остается первого порядка. Применение комбинации метода траекторий и метода конечных элементов позволяет построить экономичный алгоритм с вычислительной точки зрения.

1. Дифференциальные уравнения. Выпишем дифференциальные уравнения одномерного вязкого теплопроводного газа в виде безразмерных уравнений неразрывности, количества движения и уравнения для внутренней энергии [4]:

$$\frac{d\rho}{dt} + \rho \frac{\partial u}{\partial x} = 0, \tag{1}$$

$$\rho \frac{du}{dt} = -\frac{\partial P}{\partial x} + \frac{\partial \tau_{xx}}{\partial x},$$

$$\rho \,\frac{de}{dt} + P \,\frac{\partial u}{\partial x} = Q_t - \frac{\partial q_x}{\partial x} + \Phi,\tag{2}$$

$$P = P(\rho, e), \quad \mu = \mu(\rho, e).$$
 (3)

Здесь ρ — плотность, u — проекция вектора скорости на ось x, P — давление, μ — динамический коэффициент вязкости, e — внутренняя энергия, Q — внешний поток тепла от внешних источников; тензор напряжений τ_{xx} , проекция теплового потока q_x и диссипативная функция Φ имеют вид

$$\tau_{xx} = \frac{4}{3} \frac{1}{\operatorname{Re}} \mu \frac{\partial u}{\partial x}, \quad q_x = -\frac{\gamma}{\operatorname{Pr}\operatorname{Re}} \mu \frac{\partial e}{\partial x}, \quad \Phi = \frac{4}{3} \frac{1}{\operatorname{Re}} \mu \left(\frac{\partial u}{\partial x}\right)^2, \tag{4}$$

¹ Институт вычислительного моделирования СО РАН, Академгородок 50, строение 44, 660036, г. Красноярск; В. В. Шайдуров, чл.-корр. РАН, директор, e-mail: shidurov@icm.krasn.ru; Г. И. Щепановская, доцент, ст. науч. сотр., e-mail: gi@icm.krasn.ru; М. В. Якубович, аспирант, e-mail: yakubovich@icm.krasn.ru

[©] Научно-исследовательский вычислительный центр МГУ им. М.В. Ломоносова

где Re
 — число Рейнольдса, Pr — число Прандтля и $\gamma=1.4.$

2. Модифицированные уравнения. Преобразуем уравнения (1) и (2) к новому виду. Для этого, учитывая неотрицательность плотности и внутренней энергии, введем следующие функции:

$$\rho = \sigma^2, \tag{5}$$

$$e = \varepsilon^2. \tag{6}$$

Подставим (5) в уравнение неразрывности (1) и получим

$$\frac{d(\sigma^2)}{dt} + \sigma^2 \frac{\partial u}{\partial x} = 0$$

Дифференцируя по t, имеем

$$2\sigma \, \frac{d\sigma}{dt} + \sigma^2 \, \frac{\partial u}{\partial x} = 0.$$

Сокращая последнее уравнение на 2σ , получим

$$\frac{d\sigma}{dt} + \frac{1}{2}\sigma\frac{\partial u}{\partial x} = 0.$$

Проделаем аналогичную процедуру для уравнения внутренней энергии (2), т.е. преобразуем уравнение (2) к новому виду с учетом (6). Для этого подставим выражение (6) в (2), в результате получим

$$\rho \frac{d(\varepsilon^2)}{dt} + \frac{\partial q_x}{\partial x} = \frac{\partial Q}{\partial t} - P \frac{\partial u}{\partial x} + \Phi.$$
(7)

Представим (7) следующим образом:

$$\rho 2\varepsilon \frac{d\varepsilon}{dt} + \frac{\partial q_x}{\partial x} = \frac{\partial Q}{\partial t} - P \frac{\partial u}{\partial x} + \Phi.$$

Далее сократим последнее уравнение на 2ε и получим

$$\rho \frac{d\varepsilon}{dt} + \frac{1}{2\varepsilon} \frac{\partial q_x}{\partial x} = \frac{1}{2\varepsilon} \frac{\partial Q}{\partial t} - \frac{P}{2\varepsilon} \frac{\partial u}{\partial x} + \frac{1}{2\varepsilon} \Phi.$$
(8)

Подставим (6) в выражение для теплового потока q_x из (4) и возьмем производную по x:

$$q_x = -\frac{2\gamma}{\Pr \operatorname{Re}} \mu \varepsilon \frac{\partial \varepsilon}{\partial x}, \quad \frac{\partial q_x}{\partial x} = -\frac{2\gamma}{\Pr \operatorname{Re}} \left(\mu \left(\frac{\partial \varepsilon}{\partial x} \right)^2 + \varepsilon \frac{\partial}{\partial x} \left(\mu \frac{\partial \varepsilon}{\partial x} \right) \right). \tag{9}$$

С учетом (9) и выражения для диссипативной функции Φ из (4) уравнение (8) примет вид

$$\rho \frac{d\varepsilon}{dt} - \frac{\gamma}{\Pr \operatorname{Re}} \left[\frac{\mu}{\varepsilon} \left(\frac{\partial \varepsilon}{\partial x} \right)^2 + \frac{\partial}{\partial x} \left(\mu \frac{\partial \varepsilon}{\partial x} \right) \right] = \frac{1}{2\varepsilon} Q_t - \frac{P}{2\varepsilon} \frac{\partial u}{\partial x} + \frac{2}{3\operatorname{Re}} \frac{\mu}{\varepsilon} \left(\frac{\partial u}{\partial x} \right)^2.$$
(10)

Замечание. Обратим внимание на появившиеся множители μ/ε и P/ε в уравнении (10), которые, как показывают расчеты, являются естественными "регуляризаторами". Например, для совершенного газа уравнение состояния (3) запишется в форме $P = \rho(\gamma - 1)e$ или $P = \sigma^2(\gamma - 1)\varepsilon^2$. Поскольку внутренняя энергия всегда положительна и больше единицы по отношению к ее величине на бесконечности, то множитель $1/\varepsilon$ "гасит" растущее как ε^2 давление. Рассуждения относительно μ/ε носят аналогичный характер. Для совершенного газа, как следует из формулы Сазерленда, динамический коэффициент вязкости является степенной функцией от внутренней энергии.

Будем решать систему уравнений, преобразованную к следующему виду:

$$\frac{d\sigma}{dt} + \frac{1}{2}\sigma\frac{\partial u}{\partial x} = 0,\tag{11}$$

$$\rho \frac{du}{dt} = -\frac{\partial P}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}, \qquad (12)$$

$$\rho \frac{d\varepsilon}{dt} - \frac{\gamma}{\Pr \operatorname{Re}} \left[\frac{\mu}{\varepsilon} \left(\frac{\partial \varepsilon}{\partial x} \right)^2 + \frac{\partial}{\partial x} \left(\mu \frac{\partial \varepsilon}{\partial x} \right) \right] = \frac{1}{2\varepsilon} Q_t - \frac{P}{2\varepsilon} \frac{\partial u}{\partial x} + \frac{2}{3\operatorname{Re}} \frac{\mu}{\varepsilon} \left(\frac{\partial u}{\partial x} \right)^2.$$
(13)

Замыкают систему уравнений (11)–(13) алгебраические соотношения для давления и динамического коэффициента вязкости совершенного газа $P = P(\sigma, \varepsilon), \ \mu = \mu(\sigma, \varepsilon).$

3. Дискретизация методом Бубнова–Галеркина. В качестве расчетной области возьмем единичный отрезок $\overline{\Omega} = [0, 1]$ с границей Γ , состоящей из концов отрезка. Введем равномерную сетку $x_i = ih$, $i = 0, 1, \ldots, n$, с шагом h = 1/n ($n \ge 2$).

Обозначим множество узлов области $\overline{\Omega}$: $\overline{\Omega}_h = \{S_i = (x_i), i = 0, 1, ..., n\}$, введем множество внутренних узлов $\Omega_h = \{S_i = (x_i), i = 1, ..., n-1\}$ и два граничных узла $\Gamma_h = \{S_i = (x_i), i = 0, n\}$. В результате расчетная область $\overline{\Omega}$ разбилась на n интервалов.

Для каждого узла $S_i \in \overline{\Omega}_h$ введем базисную функцию $\varphi_i(x)$:

$$\varphi_i(x) = \begin{cases} \left(1 - \frac{|x_i - x|}{h}\right), & x \in [x_{i-1}, x_{i+1}], \\ 0, & x \notin (x_{i-1}, x_{i+1}), \end{cases}$$

которая равна единице в S_i и равна нулю во всех остальных узлах $\overline{\Omega}$.

Будем искать приближенное решение в виде

$$\sigma^h(t,x) = \sum_{i=0}^n \sigma_i(t)\varphi_i(x), \quad u^h(t,x) = \sum_{i=0}^n u_i(t)\varphi_i(x), \quad \varepsilon^h(t,x) = \sum_{i=0}^n \varepsilon_i(t)\varphi_i(x).$$

После дискретизации уравнения (11) по пространству, получим дискретный аналог уравнения неразрывности:

$$\frac{d\sigma_l}{dt} + \frac{1}{4h}\sigma_l(u_{l+1} - u_{l-1}) = 0, \quad l = 1, \dots, n-1.$$
(14)

Дискретный аналог уравнения количества движения (12) принимает следующий вид: для $l=1,\ldots,n-1$

$$\rho_l \frac{du_l}{dt} + \frac{2}{3h^2} \frac{1}{\text{Re}} \left((u_l - u_{l-1})(\mu_{l-1} + \mu_l) - (u_{l+1} - u_l)(\mu_l + \mu_{l+1}) \right) = \frac{1}{2h} \left(P_{l-1} - P_{l+1} \right). \tag{15}$$

По аналогии с предыдущим уравнением выпишем дискретный аналог уравнения энергии (13):

$$\rho_{l} \frac{d\varepsilon_{l}}{dt} - \frac{1}{2h^{2}} \frac{\gamma}{\Pr \operatorname{Re}} \frac{\mu_{l}}{\varepsilon_{l}} \left((\varepsilon_{l+1} - \varepsilon_{l})^{2} + (\varepsilon_{l} - \varepsilon_{l-1})^{2} \right) + \frac{1}{2h^{2}} \frac{\gamma}{\Pr \operatorname{Re}} \left((\varepsilon_{l} - \varepsilon_{l-1})(\mu_{l-1} + \mu_{l}) - (\varepsilon_{l+1} - \varepsilon_{l})(\mu_{l} + \mu_{l+1}) \right) = (16)$$

$$= -\frac{1}{4h} \frac{P_{l}}{\varepsilon_{l}} \left(u_{l+1} - u_{l-1} \right) + \frac{1}{3h^{2}} \frac{1}{\operatorname{Re}} \frac{\mu_{l}}{\varepsilon_{l}} \left((u_{l+1} - u_{l})^{2} + (u_{l} - u_{l-1})^{2} \right), \quad l = 1, \dots, n-1.$$

4. Метод траекторий. Введем равномерную сетку по времени $\overline{\omega}_{\tau} = \{t_k : t_k = k\tau, k = 0, ..., m\}$ с шагом $\tau = t_{\text{fin}}/m$. Производную по времени (субстанциональная) в уравнении (14) аппроксимируем с помощью разностной производной назад по времени вдоль траектории движения частицы следующим образом [3]:

$$\frac{d\sigma_l}{dt} \approx \frac{\sigma^{k+1}(x_l) - \sigma^k\left(X_l^k\right)}{\tau}.$$
(17)

Здесь X_l^k — решение при $t^*=k\tau$ уравнения

$$\frac{dX}{dt^*} = u(t^*, X), \quad X((k+1)\tau) = x_l.$$
 (18)

Для численного решения уравнения (18) применим метод Эйлера, вычисление производится с (k + 1)го шага назад по времени. Полагая, что частица в промежутке времени $(t_k, t_{k+1}]$ движется равномерно, получим $X_l^k = x_l - u(t^*, x_l) \tau$.

Пусть $u(t^*, x_l) = u_l^k$. Значение $\sigma^k(X_l^k)$ определяется путем линейной интерполяции:

$$\sigma^{k}(X_{l}^{k}) = \begin{cases} \sigma^{k}(x_{l}) + (X_{l}^{k} - x_{l}) \frac{\sigma^{k}(x_{l}) - \sigma^{k}(x_{l-1})}{x_{l} - x_{l-1}} & \text{при} \quad u_{l}^{k} > 0, \\ \sigma^{k}(x_{l}) + (X_{l}^{k} - x_{l}) \frac{\sigma^{k}(x_{l+1}) - \sigma^{k}(x_{l})}{x_{l+1} - x_{l}} & \text{при} \quad u_{l}^{k} < 0. \end{cases}$$

Производную по времени в уравнениях (15) и (16) аппроксимируем аналогично разностной производ-

ной (17), в результате получим
$$\rho_l \frac{du_l}{dt} \approx \rho_l^{k+1} \frac{u^{k+1}(x_l) - u^k(X_l^k)}{\tau}, \ \rho_l \frac{d\varepsilon_l}{dt} \approx \rho_l^{k+1} \frac{\varepsilon^{k+1}(x_l) - \varepsilon^k(X_l^k)}{\tau}.$$

Значения $u^{k}(X_{l}^{k})$ и $\varepsilon^{k}(X_{l}^{k})$ вычисляются путем линейной интерполяции аналогично $\sigma^{k}(X_{l}^{k})$.

5. Системы алгебраических уравнений. После аппроксимации производной по времени в дискретных аналогах (14)–(16) получаем системы квазилинейных алгебраических уравнений. С учетом обозначений $\sigma^{k+1}(x_l) = \sigma_l^{k+1}, u^{k+1}(x_l) = u_l^{k+1}$ и $\varepsilon^{k+1}(x_l) = \varepsilon_l^{k+1}$ выпишем каждую систему. Для уравнения переноса массы система алгебраических уравнений относительно неизвестных σ^{k+1} имеет вид

$$\left(\frac{h}{\tau} + \frac{1}{4}\left(u_{l+1}^{k} - u_{l-1}^{k}\right)\right)\sigma_{l}^{k+1} = \frac{h}{\tau}\,\sigma^{k}\left(X_{l}^{k}\right), \quad l = 1, \dots, n-1.$$

Для уравнения количества движения система алгебраических уравнений относительно неизвестных в узлах разбиения u^{k+1} может быть приведена к форме для $l=1,\ldots,n-1$

$$\begin{split} \left[-\frac{2}{3h^2} \frac{1}{\text{Re}} \left(\mu_{l-1}^k + \mu_l^k \right) \right] u_{l-1}^{k+1} + \left[\frac{\rho_l^{k+1}}{\tau} + \frac{2}{3h^2} \frac{1}{\text{Re}} \left(\mu_{l-1}^k + 2\mu_l^k + \mu_{l+1}^k \right) \right] u_l^{k+1} + \\ + \left[-\frac{2}{3h^2} \frac{1}{\text{Re}} \left(\mu_l^k + \mu_{l+1}^k \right) \right] u_{l+1}^{k+1} = \frac{\rho_l^{k+1}}{\tau} u^k \left(X_l^k \right) + \frac{1}{2h} \left(P_{l-1}^k - P_{l+1}^k \right). \end{split}$$

Система квазилинейных алгебраических уравнений, соответствующая уравнению внутренней энергии, выглядит следующим образом: для $l=1,\ldots,n-1$

$$\begin{split} \frac{1}{2h^2} & \frac{\gamma}{\Pr \operatorname{Re}} \frac{\mu_l^k}{\varepsilon_l^k} \left(\varepsilon_l^k - \varepsilon_{l-1}^k \right) - \frac{1}{2h^2} \frac{\gamma}{\Pr \operatorname{Re}} \left(\mu_{l-1}^k + \mu_l^k \right) \right] \varepsilon_{l-1}^{k+1} + \\ & + \left[\frac{\rho_l^{k+1}}{\tau} - \frac{1}{2h^2} \frac{\gamma}{\Pr \operatorname{Re}} \frac{\mu_l^k}{\varepsilon_l^k} \left(2\varepsilon_l^k - \varepsilon_{l+1}^k - \varepsilon_{l-1}^k \right) + \frac{1}{2h^2} \frac{\gamma}{\Pr \operatorname{Re}} \left(2\mu_l^k + \mu_{l+1}^k + \mu_{l-1}^k \right) \right] \varepsilon_l^{k+1} + \\ & + \left[-\frac{1}{2h^2} \frac{\gamma}{\Pr \operatorname{Re}} \frac{\mu_l^k}{\varepsilon_l^k} \left(\varepsilon_{l+1}^k - \varepsilon_l^k \right) - \frac{1}{2h^2} \frac{\gamma}{\Pr \operatorname{Re}} \left(\mu_l^k + \mu_{l+1}^k \right) \right] \varepsilon_{l+1}^{k+1} = \\ & = \frac{\rho_l^{k+1}}{\tau} \varepsilon^k (X_l^k) - \frac{1}{4h} \frac{P_l^k}{\varepsilon_l^k} \left(u_{l+1}^{k+1} - u_{l-1}^{k+1} \right) + \frac{1}{3h^2} \frac{1}{\operatorname{Re}} \frac{\mu_l^k}{\varepsilon_l^k} \left[\left(u_{l+1}^{k+1} - u_l^{k+1} \right)^2 + \left(u_l^{k+1} - u_{l-1}^{k+1} \right)^2 \right]. \end{split}$$

Таким образом, получена консервативная вариационно-разностная схема первого порядка аппроксимации. Для решения систем линейных алгебраических уравнений с трехдиагональной матрицей используется метод немонотонной прогонки, который отличается высокой вычислительной устойчивостью [5].

6. Тестовые расчеты. Для тестирования полученной математической модели функции *u*, *σ*, *ε* задаются следующим явным образом:

$$u(x,t) = x(x-1)^{2}t, \quad \sigma(x,t) = x(x-1)^{2}t+1, \quad \varepsilon(x,t) = x(x-1)^{2}t+1.$$
(19)

При подстановке функций (19) в исходные уравнения и модифицированные уравнения получаются соответственно правые части f_{ρ} , f_{σ} , f_{u} , f_{e} и f_{ε} , которые учитываются в системах уравнений при их численном решении. Нормы погрешности в пространстве L_{2} и L_{∞} определяются следующим образом:

$$\|\delta a\|_{2,h} = \left(\int (\delta a)^2 \, dx\right)^{1/2}, \quad \|\delta a\|_{\infty,h} = \max_i |a_i^* - a_i^h|,$$

$$\delta a = |a_i^* - a_i^h|, \quad \int (\delta a)^2 \, dx = \frac{h}{2} \left(|a_0^* - a_0^h|^2 + |a_n^* - a_n^h|^2\right) + h \sum_{i=1}^{n-1} |a_i^* - a_i^h|^2.$$

Для $\|\delta\sigma\|_{\infty,h}$ и $\|\delta\rho\|_{\infty,h}$ можно получить соотношение: $\|\delta\rho\|_{\infty,h} = \|\delta\sigma\|_{\infty,h} \max_{i} |\sigma_{i}^{*} + \sigma_{i}^{h}|.$ Норму $\|\delta\rho\|_{2,h}$ можно выразить через $\|\delta\sigma_{i}\|_{\infty,h}$ следующим образом:

$$\begin{split} \|\delta\rho\|_{2,h} &= \left(\frac{h}{2} \left(\|\delta\rho_0\|_{\infty,h}^2 + \|\delta\rho_n\|_{\infty,h}^2\right) + h\sum_{i=1}^{n-1} \|\delta\rho_i\|_{\infty,h}^2\right)^{1/2}, \\ \|\delta\rho\|_{2,h} &= \left(\frac{h}{2} \left[\left(\|\delta\sigma_0\|_{\infty,h} |\sigma_0^* + \sigma_0^h|\right)^2 + \left(\|\delta\sigma_n\|_{\infty,h} |\sigma_n^* + \sigma_n^h|\right)^2\right] + h\sum_{i=1}^{n-1} \left(\|\delta\sigma_i\|_{\infty,h} |\sigma_i^* + \sigma_i^h|\right)^2\right)^{1/2}. \end{split}$$

Нормы погрешностей в табл. 1 и 2 приведены для шага по времени au = 0.0001 в момент времени $t = k \tau$ (k = 1000). Нормы погрешностей в табл. 3 и 4 приведены для шага по времени $\tau = 0.0002$ в момент времени $t = k\tau$ (k = 500).

Таблица 1	L
-----------	---

h	0.05	0.04	0.025	0.02	0.0125	0.01
$\ \delta\sigma\ _{2,h}$	0.0000441	0.0000319	0.0000161	0.0000117	0.0000061	0.0000046
$\ \delta\rho\ _{2,h}$	0.0000882	0.0000637	0.0000321	0.0000233	0.0000122	0.0000092
$\ \delta\varepsilon\ _{2,h}$	0.0000338	0.0000278	0.0000196	0.0000172	0.0000142	0.0000133
$\ \delta e\ _{2,h}$	0.0000672	0.0000551	0.0000388	0.0000341	0.0000280	0.0000264
$\ \delta u\ _{2,h}$	0.0001450	0.0001065	0.0000575	0.0000441	0.0000275	0.0000230

Таблица 2

h	0.05	0.04	0.025	0.02	0.0125	0.01
$\ \delta\sigma\ _{\infty,h}$	0.0002482	0.0002006	0.0001282	0.0001038	0.0000670	0.0000546
$\ \delta\rho\ _{\infty,h}$	0.0004959	0.0004007	0.0002560	0.0002073	0.0001338	0.0001091
$\ \delta\varepsilon\ _{\infty,h}$	0.0002119	0.0001929	0.0001641	0.0001544	0.0001397	0.0001348
$\ \delta e\ _{\infty,h}$	0.0004206	0.0003826	0.0003249	0.0003054	0.0002760	0.0002662
$\ \delta u\ _{\infty,h}$	0.0008391	0.0006920	0.0004692	0.0003945	0.0002819	0.0002442

Таблица 3

h	0.05	0.04	0.025	0.02	0.0125	0.01
$\ \delta\sigma\ _{2,h}$	0.0000449	0.0000326	0.0000168	0.0000125	0.0000071	0.0000058
$\ \delta\rho\ _{2,h}$	0.0000897	0.0000651	0.0000336	0.0000249	0.0000142	0.0000115
$\ \delta\varepsilon\ _{2,h}$	0.0000339	0.0000278	0.0000196	0.0000172	0.0000142	0.0000134
$\ \delta e\ _{2,h}$	0.0000672	0.0000551	0.0000388	0.0000341	0.0000281	0.0000264
$\ \delta u\ _{2,h}$	0.0001477	0.0001092	0.0000604	0.0000472	0.0000312	0.0000269

Таблица 4

h	0.05	0.04	0.025	0.02	0.0125	0.01
$\ \delta\sigma\ _{\infty,h}$	0.0002530	0.0002054	0.0001330	0.0001087	0.0000719	0.0000596
$\ \delta\rho\ _{\infty,h}$	0.0005054	0.0004103	0.0002657	0.0002171	0.0001436	0.0001190
$\ \delta\varepsilon\ _{\infty,h}$	0.0002121	0.0001931	0.0001643	0.0001545	0.0001399	0.0001349
$\ \delta e\ _{\infty,h}$	0.0004210	0.0003830	0.0003252	0.0003057	0.0002763	0.0002665
$\ \delta u\ _{\infty,h}$	0.0008545	0.0007075	0.0004849	0.0004102	0.0002977	0.0002601

7. Задача о распространении теплового импульса. При решении модельной задачи тепловой импульс задается в окрестности центра расчетной области, газодинамическая постоянная γ , число Рейнольдса Re, число Прандтля Pr, число Маха M_{∞} и ω имеют следующие значения: $\gamma = 1.4$, Re = 2×10^3 , Pr = 0.7,

 $M_{\infty} = 4, \omega = 0.8$ [6]. Температура *T* определяется из следующего уравнения состояния: $T = \frac{\gamma M_{\infty}^2 P}{\rho}$. В качестве начальных условий задаются условия затухания возмущений в бесконечном удалении от источника. Условия на граница и сточника источника. Условия на границе для плотности, скорости и энергии: $\rho\Big|_{x=0} = \rho\Big|_{x=1} = 1, \quad u\Big|_{x=0} = u\Big|_{x=1} = 0,$ $e|_{x=0} = e|_{x=1} = 1.$

На рис. 1–4 представлены графики распределения плотности, температуры, скорости и давления газа при $h = 0.002 \ (n = 500), \tau = 0.0001$. Кривые, обозначенные на рисунках как 1–4, соответствуют расчетным моментам безразмерного времени t = 0.01; 0.05; 0.1; 0.2.

8. Задача одномерной геодинамики. На основе полученной численной модели рассматривается задача одномерной геодинамики. В качестве начальных и граничных условий берутся реальные значения плотности и температуры, отнесенные к соответствующим величинам на поверхности земного шара. Диаметр Земли занимает половину расчетной области. Распределение плотности вещества Земли, как следует из табличных данных [7, 8], соответствует скачкообразному изменению плотности при переходе через границы Мохоровичича и Вихерта–Гутенберга [9].

На рис. 5 представлено распределение скорости вещества Земли. Кривые, обозначенные на рисунке как 1–3, соответствуют расчетным моментам безразмерного времени t = 0.0; 0.02; 0.05. Поведение кривых отражает переход от ядра к мантии и от мантии к коре.

В заключение следует отметить, что полученные системы уравнений удовлетворяют законам сохранения массы и полной энергии на дискретном уровне, обеспечивая устойчивость дискретного решения по времени. Замена искомых функций в уравнениях неразрывности и внутренней энергии обеспечивает повышение точности приближенного решения, как следует из табл. 1–4, и приводит к меньшей абсолютной погрешности в норме L_2 и L_{∞} . Применение комбинации метода траекторий и метода конечных элементов не требует согласования триангуляций на соседних временных слоях, что значительно облегчает динамическое разрежение или сгущение триангуляций по времени для оптимизации вычислительной работы или улучшения аппроксимации в пограничных слоях и ударных волнах. Для решения систем алгебраических уравнений используется многосеточный метод с внешними итерациями по нелинейности. Совокупность методов позволяет построить экономичный алгоритм с вычислительной точки зрения.

Работа выполнена при финансовой поддержке РФФИ (код проекта 11–01–00224) и проекта № 89 Сибирского отделения РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ушакова О.А., Шайдуров В.В., Щепановская Г.И. Метод конечных элементов для уравнений Навье–Стокса в сферической системе координат // Вестник КрасГУ. 2006. № 4. 151–156.
- 2. Флетчер К. Численные методы на основе метода Галеркина. М.: Мир, 1988.
- 3. *Pironneau O*. On the transport–diffusion algorithm and its applications to the Navier–Stokes equations // Numerische Mathematik. 1982. **38**. 309–332.
- 4. Anderson D., Tannehill J., Pletcher R. Computational fluid mechanics and heat transfer. New York: Hemisphere Publ. Corp., 1984.
- 5. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
- 6. Шайдуров В.В., Щепановская Г.И., Якубович М.В. Одномерная модель динамики вязкого теплопроводного газа // Материалы XIV международной научной конференции "Решетневские чтения". Красноярск: СибГАУ, 2010. 440–441.
- 7. Шайдуров В.В., Щепановская Г.И. Газодинамическая модель внутреннего строения Земли // Вестник СибГАУ. 2008. № 1. 79–83.
- Vyatkin A.V., Shaidurov V.V., Shchepanovskaya G.I. Numerical spherically-symmetric simulation of deep-seated geodynamics // J. of Applied and Industrial Mathematics. 2010. 4, N 2. 290–297.
- 9. Jeffreys H. The Earth: its origin, history, and physical constitution. Cambridge: Cambridge Univ. Press, 2008.

Поступила в редакцию 29.03.2011