УДК 004.043

ИНТЕГРАЦИЯ АЛГОРИТМА КЛАСТЕРИЗАЦИИ FUZZY C-MEANS B POSTGRESQL Р. М. Миниахметов 1 , М. Л. Цымблер 1

Интеграция алгоритмов интеллектуального анализа данных (ИАД) в реляционные СУБД является актуальной задачей. Реализация алгоритмов ИАД на языке SQL позволяет существенно снизить накладные расходы по организации ИАД по сравнению с использованием внешних утилит. В настоящей статье предложена реализация алгоритма нечеткой кластеризации Fuzzy c-Means для реляционной СУБД PostgreSQL с открытым исходным кодом. Работа выполнена при финансовой поддержке РФФИ (проект № 09–07–00241-а) и Минобрнауки РФ (государственный контракт № 07.514.11.4036).

Ключевые слова: нечеткая кластеризация, интеграция алгоритма кластеризации, реляционные СУБД.

1. Введение. В настоящее время технологии интеллектуального анализа данных (ИАД) являются одной из интенсивно развивающихся областей аналитической обработки данных. Интеграция алгоритмов ИАД в реляционные системы управления базами данных (СУБД) представляет собой одну из актуальных задач этой области [1, 17, 18].

Сказанное обусловлено следующими основными причинами. С одной стороны, на сегодня СУБД активно используются во всех сферах деятельности человека, связанных с хранением и аналитической обработкой больших объемов данных. С другой стороны, большинство существующих алгоритмов ИАД предполагают размещение анализируемых данных в оперативной памяти [5, 6, 12], и их совместное использование с СУБД требует значительных накладных расходов, связанных с предварительным экспортом анализируемых данных из базы данных для внешней аналитической утилиты и импортом результатов работы этой утилиты обратно в базу данных.

В настоящее время СУБД с открытым исходным кодом (PostgreSQL, MySQL и др.) получили широкое распространение и являются надежной альтернативой коммерческим СУБД [13, 24, 25]. Кроме того, имеются проекты разработки параллельных СУБД на основе СУБД с открытым исходным кодом [21–23].

Исследования по интеграции алгоритмов интеллектуального анализа данных с реляционными СУБД представлены следующими работами. Ассоциативные правила рассмотрены в [15]. Обобщенные примитивы интеллектуального анализа предложены в работе [16]. Деревья решений рассмотрены в работе [17]. Настоящая работа посвящена проблеме интеграции алгоритма нечеткой кластеризации данных Fuzzy с-Means (FCM) [2–4] со свободной СУБД PostgreSQL [7]. Наше исследование основано на работах [1, 18], в которых описана интеграция алгоритма кластеризации К-Меans с реляционной СУБД. В настоящей статье эти результаты расширены для случая нечеткой кластеризации, когда векторы данных принадлежат нескольким кластерам. Нечеткая кластеризация широко используется в интеллектуальном анализе реальных данных, например медицинских [19, 20]. Насколько нам известно, работы, посвященные интеграции алгоритмов нечеткой кластеризации в реляционную СУБД, по-видимому, отсутствуют.

Статья организована следующим образом. В разделе 2 вводятся базовые определения и приводится обзор алгоритма FCM. Раздел 3 описывает реализацию алгоритма FCM на языке SQL (Structured Query Language), названную pgFCM. Вычислительные эксперименты представлены в разделе 4. Раздел 5 содержит заключение и возможные направление дальнейшей работы.

2. Алгоритм Fuzzy c-Means. Алгоритм K-Means [8] является одним из самых известных алгоритмов кластеризации, он прост и достаточно быстр [9]. Алгоритм FCM обобщает K-Means для случая нечеткой кластеризации, когда векторы данных могут принадлежать нескольким группам (кластерам) одновременно с некоторым весом (степенью принадлежсности). Для описания алгоритма FCM мы используем следующие обозначения: $d \in \mathbb{N}$ — размерность пространства векторов данных; $i \in \mathbb{N}$: $1 \leq l \leq d$ — номер координаты вектора; $n \in \mathbb{N}$ — мощность обучающей выборки; $X \subset \mathbb{R}^d$ — обучающая выборка векторов данных; $i \in \mathbb{N}$: $1 \leq i \leq n$ — номер вектора обучающей выборки; $x_i \in X$ — i-й вектор выборки; $k \in \mathbb{N}$ —

¹ Южно-Уральский государственный университет, факультет вычислительной математики и информатики, просп. Ленина, 76, 454080, г. Челябинск; Р. М. Миниахметов, аспирант, e-mail: tavein@gmail.com; М. Л. Цымблер, доцент, e-mail: mzym@susu.ru

⁽c) Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

количество кластеров; $j \in \mathbb{N}: 1 \leqslant j \leqslant k$ — номер кластера; $C \subset \mathbb{R}^{k \times d}$ — матрица, содержащая центры кластеров (uenmpoudu); $c_j \in \mathbb{R}^d$ — центр кластера j, вектор размерности d; $x_{il}, c_{jl} \in \mathbb{R}$ — l-е координаты векторов x_i и c_j соответственно; $U \subset \mathbb{R}^{n \times k}$ — матрица степеней принадлежности, где $u_{ij} \in \mathbb{R}: 0 \leqslant u_{ij} \leqslant 1$ — степень принадлежности вектора x_i кластеру j; $\rho(x_i, c_j)$ — функция расстояния, определяющая степень принадлежности вектора x_i кластеру j; $m \in \mathbb{R}: m > 1$ — степень нечеткости целевой функции; J_{FCM} — целевая функция.

Алгоритм FCM основан на минимизации целевой функции J_{FCM} :

$$J_{\text{FCM}}(X, k, m) = \sum_{i=1}^{N} \sum_{j=1}^{k} u_{ij}^{m} \rho^{2}(x_{i}, c_{j}).$$
(1)

Нечеткое разбиение входного множества векторов достигается при минимизации целевой функции (1). На каждой итерации происходит обновление матрицы принадлежностей U и центроидов c_{ij} по формулам

$$u_{ij} = \sum_{t=1}^{k} \left(\frac{\rho(x_i, c_j)}{\rho(x_i, c_t)} \right)^{2/(1-m)}, \tag{2}$$

$$\forall j, l \quad c_{jl} = \sum_{i=1}^{n} u_{ij}^{m} x_{il} \left(\sum_{i=1}^{n} u_{ij}^{m} \right)^{-1}. \tag{3}$$

Пусть s — номер итерации, $u_{ij}^{(s)}$ и $u_{ij}^{(s+1)}$ — элементы матрицы U на шагах s и s+1 соответственно, а $\varepsilon \in (0,1) \subset \mathbb{R}$ — критерий останова. Тогда условие завершения алгоритма выглядит следующим образом:

$$\max_{ij} \{ |u_{ij}^{(s+1)} - u_{ij}^{(s)}| \} < \varepsilon. \tag{4}$$

С каждой итерацией целевая функция (1) стремится к локальному минимуму (седловой точке) [10]. Ниже представлен базовый алгоритм FCM.

Алгоритм Fuzzy c-Means.

Вход: X, m, ε, k . Выход: U.

Шаг 1. s := 0.

Шаг 2. $U^{(0)} := (u_{ij}).$

Шаг 3 (вычисление новых координат центроидов). Вычислить $C^{(s)}:=(c_j)$, используя формулу (3), где $u_{ij}\in U^{(s)}$.

Нумерация элементов данных

Номер	Интервал	Семантика
$egin{matrix} i \\ j \\ l \end{bmatrix}$	$\frac{\overline{1,n}}{\overline{1,k}}$ $\overline{1,d}$	номер вектора данных номер кластера номер координаты вектора

Шаг 4 (обновление значений матриц). Вычислить $U^{(s)}$ и $U^{(s+1)}$ по формуле (2).

Шаг 5. s := s + 1.

Шаг 6. Если условие (4) не выполняется, то перейти на шаг 3.

Шаг 7. Стоп.

На вход алгоритма поступают множество векторов данных $X=(x_1,x_2,\ldots,x_n)$, количество кластеров k, степень нечеткости m и критерий останова ε . Результатом работы алгоритма является матрица степеней принадлежности U.

- 3. Реализация алгоритма Fuzzy c-Means на языке SQL. В данном разделе мы опишем реализацию алгоритма Fuzzy c-Means на языке SQL в качестве подхода к интеграции алгоритма нечеткой кластеризации в СУБД PostgreSQL.
- **3.1.** Общие определения. Для интеграции алгоритма FCM с реляционной СУБД необходимо обеспечить хранение данных, которыми оперирует алгоритм (U,X), в виде реляционных таблиц. Идентификация элементов реляционных таблиц осуществляется с использованием номеров, указанных в табл. 1 (где числа n,k и d определены ранее в разделе 2).

Без ограничения общности в качестве функции расстояния $\rho(x_i, c_j)$ используется евклидова метрика:

$$\rho(x_i, c_j) = \sqrt{\sum_{l=1}^{d} (x_{il} - c_{jl})^2}.$$
 (5)

Для нахождения максимального значения $\left|u_{ij}^{(s+1)}-u_{ij}^{(s)}\right|$ определим функцию δ следующим образом:

$$\delta = \max_{ij} \left\{ \left| u_{ij}^{(s+1)} - u_{ij}^{(s)} \right| \right\}. \tag{6}$$

Значение функции δ используется при проверке условия завершения (4).

3.2. Схема базы данных. Опишем схему базы данных для алгоритма pgFCM. Краткое описание и семантика таблиц приведены в табл. 2. Атрибуты, являющиеся первичными ключами, подчеркнуты.

Схема базы данных алгоритма

Таблица 2

№	Таблица	Семантика	Атрибуты	Кол-во записей
1	SH	Выборка векторов данных	$\underline{i}, x1, x2, \dots, xd$	n
2	SV	Выборка векторов данных	$\underline{i,l},val$	n d
3	C	Координаты центроидов	$\underline{j,l},val$	k d
4	SD	Расстояния между x_i и c_j	$\underline{i,j}, dist$	nk
5	U	Степени принадлежности вектора X_i кластеру j на шаге s	$\underline{i,j},val$	nk
6	UT	Степени принадлежности вектора X_i кластеру j на шаге $s+1$	$\underline{i,j},val$	nk
7	P	Значение функции (6) на текущей итерации	d, k, n, s, delta	число итераций

Для хранения выборки векторов множества X требуется определить таблицу $SH(\underline{i},x1,x2,\ldots,xd)$, каждая запись которой хранит вектор данных размерности d с номером i. Таблица SH имеет n записей и первичный ключ i.

В ходе выполнения вычислений, предусмотренных алгоритмом FCM, требуется выполнять агрегирование (подсчет суммы, максимума и др.) координат векторов множества X. Однако, в силу своего определения, таблица SH не позволяет применять функции агрегирования языка SQL. В соответствии с этим нами определяется таблица $SV(\underline{i,l},val)$, состоящая из $n\,d$ записей и имеющая составной первичный ключ (i,l). Таблица SV представляет собой выборку данных из таблицы SH. Структура таблицы позволяет применять агрегирующие функции языка SQL, например функции $\max()$ и $\sup()$.

Для хранения данных о координатах центроидов кластеров необходимо создать отдельную временную таблицу $C(\underline{j},l,val)$, которая имеет k d записей и составной первичный ключ (j,l). Как и у таблицы SV, структура таблицы C позволяет применять агрегирующие функции.

Согласно алгоритму Fuzzy c-Means, на шаге 5 алгоритма требуется определять степень принадлежности вектора i кластеру j, что включает в себя вычисление расстояний $\rho(x_i, c_j)$. Для хранения расстояний используется таблица SD(i, j, dist) с количеством записей n k и составным первичным ключом (i, j).

Таблица $U(\underline{i,j},val)$ хранит степени принадлежности, полученные на шаге s. Для хранения степеней принадлежности на шаге s+1 потребуется еще одна, аналогичная по структуре, таблица $UT(\underline{i,j},val)$. Обе таблицы имеют количество записей n k, а также составной первичный ключ (i,j).

Таблица $P(\underline{d, k, n}, s, delta)$ хранит номер итерации s и значение формулы (6) для этого номера. Количество записей в таблице зависит от числа итераций, которые понадобились для завершения алгоритма.

3.3. Алгоритм pgFCM. Выполнение алгоритма инициируется вызовом хранимой процедуры на языке PL/pgSQL. Ниже показаны основные шаги алгоритма pgFCM.

Bxoд: m, eps, k, SH. Выход: U.

Шаг 1 (инициализация таблиц). Создать и инициализировать временные таблицы U, P, SV и др.

Шаг 2 (вычисления). Вычислить координаты центроидов, обновить таблицу C; вычислить расстояния $\forall \ y_i \ c_j \| y_i - c_j \|$, обновить таблицу SD; вычислить $UT = (ut_{ij})$, обновить таблицу UT.

Шаг 3 (обновление таблиц). Обновить таблицы P и U.

Шаг 4 (проверка завершения). Если условие $\max_{ij} \|ut_{ij} - u_{ij}\| < \varepsilon$ не выполняется, то перейти на шаг 2.

Шаг 5. Стоп.

Входное множество векторов данных X хранится в таблице SH. Степень нечеткости m, критерий останова eps и количество кластеров k являются входными параметрами функции pgFCM. Конечный результат работы алгоритма pgFCM находится в таблице U.

3.3.1. Реализация шага "Подготовка". Ниже приведены команды создания временных таблиц SV, U и P (табл. 2). Для создания таблиц используется ключевое слово ТЕМР, которое указывает, что создается специальная временная таблица. Временные таблицы создаются в отдельном табличном пространстве и уничтожаются по завершении SQL-сессии. Кроме того, временные таблицы с одинаковыми именами могут

независимо использоваться разными пользователями.

```
CREATE TEMP TABLE U (i int, j int, val numeric,
    PRIMARY KEY (i,j));

CREATE TEMP TABLE P (d int, k int, n int, s int,
    delta numeric, PRIMARY KEY (d,k,n));

CREATE TEMP TABLE SV (i int, l int, val numeric,
    PRIMARY KEY (i,l));
```

3.3.2. Реализация шага "Инициализация". Перед выполнением вычислительной части алгоритма необходимо проинициализировать таблицы SV, U и P.

Инициализация таблиц SV, U и P алгоритма pgFCM:

```
- инициализация таблицы SV
```

```
INSERT INTO SV
  SELECT SH.i, 1, x1 FROM SH;
. . .
INSERT INTO SV
  SELECT SH.i, d, xd FROM SH;
  — инициализация таблицы Р
INSERT INTO P(d, k, n, s, delta)
 VALUES (d, k, n, 0, 0.0);
  - инициализация таблицы U
INSERT INTO U (i, j, val)
  VALUES (1, 1, random());
INSERT INTO U (i, j, val)
 VALUES (i, j, random());
INSERT INTO U (i, j, val)
  VALUES (n, k, random());
  — нормирование степеней принадлежности
UPDATE U SET val = val / U1.tmp
FROM (SELECT i, sum(val) AS tmp
      FROM U
      GROUP BY i) AS U1
WHERE U1.i = U.i;
```

Таблица SV формируется путем выборки записей из таблицы SH.

Существует несколько подходов к инициализации координат центроидов, в данном документе используется следующий. Для таблицы U за степень принадлежности вектора x_i кластеру j принимается случайное число, которое затем нормируется. Таким образом, после нормирования соблюдаются следую-

щие свойства [4] алгоритма Fuzzy
$$c$$
-Means: $\forall i, j \quad u_{ij} \in [0;1], \quad \forall i \quad \sum_{j=1}^k u_{ij} = 1.$

При инициализации таблицы P количество кластеров k задается процедурой pgFCM и является ее параметром. Размерность пространства векторов d и мощность обучающей выборки n задаются на этапе подготовки. Номер итерации s и delta инициализируются нулевыми значениями.

3.3.3. Реализация шага "Вычисление". На шаге вычислений алгоритма pgFCM производятся вычисления степеней принадлежности, центров кластеров и расстояний по формулам (2), (3), и (5) соответственно. Ниже представлен соответствующий исходный код:

[—] вычисление центров кластеров

```
INSERT INTO C
  SELECT R.j, SV.1, sum(R.s * SV.val) / sum(R.s) AS val
  FROM (SELECT i, j, U.val^m AS s
        FROM U) AS R, SV
        WHERE R.i = SV.i
        GROUP BY j, 1;
  — вычисление расстояний
INSERT INTO SD
  SELECT i, j, sqrt(sum((SV.val - C.val)^2)) as dist
  FROM SV, C
  WHERE SV.1 = C.1;
  GROUP BY i, j;
  — вычисление степеней принадлежности
INSERT INTO UT
  SELECT i, j, SD.dist^(2.0^(1.0-m)) * SD1.den AS val
  FROM (SELECT i, 1.0 / sum(dist^(2.0^(m-1.0))) AS den
        FROM SD
        GROUP BY i) AS SD1, SD
  WHERE SD.i = SD1.i;
```

Согласно алгоритму FCM, вычисление степеней принадлежности производится по формуле (2). Поскольку числитель дроби в формуле не зависит от t, то для удобства использования формулу (2) можно

```
переписать в следующем виде: u_{ij} = \rho^{2/(1-m)}(x_i, c_j) \left( \sum_{t=1}^k \rho^{2/(m-1)}(x_i, c_t) \right)^{-1}.
```

3.3.4. Реализация шага "Обновление". На шаге обновления алгоритма pgFCM происходят обновления таблиц P и U:

```
— обновление служебной таблицы
```

```
SELECT max(abs(UT.val - U.val)) INTO tmp
FROM U, UT
WHERE U.i = UT.i AND U.j = UT.j;

INSERT INTO P
VALUES (d, k, n, steps, tmp);

— обновление таблицы степеней принадлежности

TRUNCATE U;
INSERT INTO U
SELECT * FROM UT;
```

В таблице P обновляются значения номера итерации s и значение delta из формулы (6). Таблица UT хранит временные значения степеней принадлежности, которые затем вносятся в таблицу U. Для быстрого удаления всех записей таблицы U, полученных на предыдущем шаге, используется оператор truncate.

3.3.5. Реализация шага "Проверка". Шаг проверки является заключительным этапом алгоритма pgFCM. На каждой итерации выполняется проверка условия завершения алгоритма (4):

```
IF (tmp < eps) THEN
  RETURN;
END IF;</pre>
```

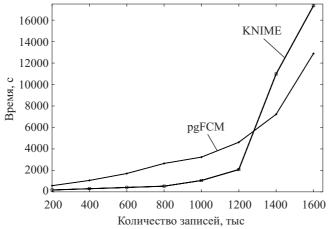
Для осуществления проверки используется выборка значения формулы (6) во временную переменную tmp процедуры pgFCM.

4. Вычислительные эксперименты. Данная статья продолжает исследование [11]. После доработки алгоритма нами были проведены вычислительные эксперименты. В этом разделе представлен график работы алгоритма pgFCM на различных наборах данных.

Таблица 3

Эксперименты проводились на следующей аппаратно-программной платформе: процессор AMD AT-HLON 64 X2 2.8 ГГц; объем оперативной памяти 3.6 ГБайт; операционная система GNU/Linux 2.6.35 $x86_64$; СУБД PostgreSQL версии 9.0.4; фреймворк с открытым исходным кодом KNIME [12–14] версии 2.3.4. для проведения интеллектуального анализа данных.

Для исследования эффективности работы алгоритма использовались реальные наборы данных (графические изображения) с параметрами $d=5,\,k=3,\,n=\overline{200000,1600000}$. На рисунке показаны результаты работы алгоритма на реальных наборах данных различных размеров. KNIME был настроен следующим образом: количество рабочих потоков для KNIME установлено равным 1; максимально доступная память java-машины — 2.5 ГБайт; при истечении объема доступной оперативной памяти — использовать жесткий диск; для доступа к СУБД PostgreSQL использовался оригинальный драйвер JDBC, который показывает лучшие характеристики времени доступа, чем драйвер ODBC, использованный в работе [1].



Производительность алгоритма pgFCM

Эксперименты показывают, что, начиная с определенного объема данных, время работы KNIME существенно превосходит время работы алгоритма pgFCM в СУБД PostgreSQL. При больших объемах исходных данных объем оперативной памяти, необходимый для работы KNIME, становится недостаточным и фреймворк начинает использовать жесткий диск для своппинга данных, что замедляет работу KNIME. В то же время, СУБД на уровне программной архитектуры предполагает возможность эффективной реализации обработки данных, размер которых превышает объем доступной оперативной памяти.

С ростом объема исходных данных увеличивается время их экспорта из базы данных и время импорта результата кластери-

Временные характеристики

pgFCM **KNIME** N, Выполнение, Выполнение, Экспорт, Импорт, тыс.

зации в базу данных. В табл. 3 представлены результаты исследования быстродействия, а также время на выгрузку исходного множества векторов из базы данных и время на загрузку ответа в базу данных.

5. Заключение. В работе предложен алгоритм нечеткой кластеризации pgFCM. Этот алгоритм реализует алгоритм кластеризации Fuzzy c-Means и работает с данными, которые размещены в реляционной СУБД с открытым исходным кодом PostgreSQL. Проведенные вычислительные эксперименты показали эффективность алгоритма на больших объемах данных по сравнению с традиционной реализацией, предполагающей использование оперативной памяти. Дальнейшие исследования могут быть направлены на разработку параллельной версии алгоритма pgFCM.

СПИСОК ЛИТЕРАТУРЫ

1. Ordonez C. Programming the K-means clustering algorithm in SQL // Proc. of the 4th Int. Conf. on Knowledge Discovery and Data Mining. 2004. Seattle: ACM, 823–828.

- 2. Jain A.K., Murty M.N., Flynn P.J. Data clustering: a review // ACM Computing Surveys. 1999. 31, N 3. 264–323.
- 3. Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters // J. of Cybernetics. 1973. **3**. 32–57.
- 4. Bezdek J.C. Pattern recognition with fuzzy objective function algorithms. Norwell: Kluwer Acad. Publ., 1981.
- 5. Dimitriadou E., Hornik K., Leisch F., Meyer D., Weingessel A. Machine Learning Open-Source Package "r-crane1071" (http://cran.r-project.org/web/packages/e1071/index.html).
- 6. Drost I., Dunning T., Eastman J., Gospodnetic O., Ingersoll G., Mannix J., Owen S., Wettin K. Apache Software Foundation. Apache Mahout. 2010 (http://cwiki.apache.org/confluence/display/MAHOUT/Fuzzy+K-Means).
- 7. Stonebraker M., Rowe L.A., Hirohama M. The implementation of POSTGRES // IEEE Trans. on Knowledge and Data Engineering. 1990. 2. 125–142.
- 8. MacQueen J.B. Some methods for classification and analysis of multivariate observations // Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1. Berkeley: Univ. of Calif. Press, 1967. 281–297.
- 9. Bradley S., Fayyad U.M., Reina C. Scaling clustering algorithms to large databases // Proc. of the 4th Int. Conf. on Knowledge Discovery and Data Mining. Menlo Park: AAAI Press, 1998. 9–15.
- 10. Bezdek J., Hathaway R., Sobin M., Tucker W. Convergence theory for fuzzy c-means: counterexamples and repairs // IEEE Trans. on Systems, Man, and Cybernetics. 1987. N 17. 873–877.
- 11. Miniakhmetov R. Integrating fuzzy c-means clustering with PostgreSQL // Proc. of SYRCoDIS 2011: The Seventh Spring Researchers Colloquium on Databases and Information Systems. Moscow: Moscow State Univ., 2011. 6–10.
- 12. Berthold M.R., Cebron N., Dill F., et al. KNIME the Konstanz Information Miner: Version 2.0 and Beyond // SIGKDD Explorations Newsletter. 2009. 11. 26–31.
- 13. Chen X., Ye Y., Williams G., Xu X. A survey of open source data mining systems // Proc. of the 2007 Int. Conf. on Emerging Technologies in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science. Vol. 4819. Berlin: Springer, 2007. 3–14.
- 14. Tiwari A., Sekhar A.K. Workflow-based framework for life science // Informatics Computational Biology and Chemistry. 2007. 31, N 5-6. 305–319.
- 15. Sarawagi S., Thomas S., Agrawal R. Integrating association rule mining with relational database systems: alternatives and implications // Proc. of the 1998 ACM SIGMOD Int. Conf. on Management of Data. Seattle: ACM, 1998. 343–354.
- 16. Clear J., Dunn D., Harvey B., Heytens M., Lohman, Mehta A., Melton M., Rohrberg L., Savasere A., Wehrmeister R., Xu M. Nonstop SQL/MX primitives for knowledge discovery // Proc. of the 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. New York: ACM, 1999. 425–429.
- 17. Graefe G., Fayyad U.M., Chaudhuri S. On the efficient gathering of sufficient statistics for classification from large SQL databases // Proc. of the 4th Int. Conf. on Knowledge Discovery and Data Mining. 1998. Menlo Park: AAAI, 204–208.
- 18. Ordonez C. Integrating k-means clustering with a relational DBMS using SQL // IEEE Trans. on Knowledge and Data Engineering. 2006. 18, N 2. 188–201.
- 19. Shihab A.I. Fuzzy clustering algorithms and their applications to medical image analysis. London: Univ. of London, 2000
- 20. Zhang D., Chen S. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation // Artificial Intelligence in Medicine. 2004. **32**. 37–50.
- 21. Пан К.С., Цымблер М.Л. Архитектура и принципы реализации параллельной СУБД PargreSQL // Параллельные вычислительные технологии (ПаВТ-2011): труды международной научной конференции (Москва, 28 марта—1 апреля 2011 г.). Челябинск: Издательский Центр ЮУрГУ, 2011. 577—584.
- 22. Paes M., Lima A.A.B., Valduriez P., Mattoso M. High-performance query processing of a real-world OLAP database with ParGRES // VECPAR 2008. Proc. of 8th Int. Conf. (Toulouse, France, June 24–27, 2008). Lecture Notes in Computer Science. Vol. 5336. Berlin: Springer, 188–200.
- 23. Kotowski N., Lima A.A.B, Pacitti E., Valduriez P., Mattoso M. Parallel query processing for OLAP in grids // Concurrency and Computation: Practice and Experience. 2008. 20, N 17. 2039–2048.
- 24. Golfarelli M. Open source BI platforms: a functional and architectural comparison // Proc. of the 11th Int. Conf. on Data Warehousing and Knowledge Discovery. DaWaK '09. Berlin: Springer, 2009. 287–297.
- 25. Thomsen C., Pedersen T.B. A survey of open source tools for business intelligence // Int. J. of Data Warehousing and Mining. 2009. 5, N 3. 56–75.

Поступила в	редакцию
11.04.2012	