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ROBUST MILTIGRID TECHNIQUE FOR SOLVING PARTIAL DIFFERENTIAL
EQUATIONS ON STRUCTURED GRIDS

S.I. Martynenko'

A new robust multigrid technique for solving elliptic partial differential equations is proposed. The
technique is based on a united computational algorithm that consists of the following stages: 1)
adaption of equations to numerical methods, 2) the control volume discretization, and 3) applying
multigrid iterations. Special subgrids of the finest grid are generated to obtain the most powerful
coarse grid correction strategy. Accuracy of the transfer operators is independent of the mesh
size on coarse grids; therefore, a smoothing procedure and a multigrid cycle may be very simple.
Expanded robustness of the multigrid technique is a result of adaption of equations, extremely
accurate formulation of the discrete problems on the coarse grids, original coarsening, the most
powerful coarse grid correction strategy, construction of problem-independent transfer operators,
and absence of pre-smoothing and interpolation. The paper represents the algorithm, estimates of
computational work, and results of numerical tests performed. Our numerical tests demonstrate
robustness and efficiency of the multigrid technique.

1. Introduction. Iterative methods are often used to solve partial differential equations. As a rule,
iterative methods should be adapted to a given problem. As a result, each fast solver includes some problem-
dependent components (for example, an extrapolation factor in SOR, transfer operators and smoothing pro-
cedure in classical multigrid methods [1], a preconditioner in conjugate-gradient-like algorithms, etc.). Many
iterative methods have been developed in recent years, and it 1s difficult to perform their comparison in detail.
Unfortunately, a method that works well for one problem type may not work as well for another. Indeed, it
may not work at all.

An iteration is called a robust one if it works for a sufficiently large class of problems [2]. We follow the
point of view that a true robust solver should be based on the adaption of problems to a computational algorithm.
Simple problems require trivial (problem-independent) modifications, and there is no drastic difference between
original and adapted problems. However, complicated problems require problem-dependent modifications for
the succeeding use of numerical methods. For example, the Navier-Stokes equations should be modified in
order to obtain a strong coupling between velocity components and pressure. Adaption of problems to the
computational algorithm can yield a single code to handle all modified problems.

Classical multigrid methods (CyjM) are known as very fast solvers for discretized partial differential equa-
tions [2]. In the first multigrid publication [3], R. P. Fedorenko formulated a multigrid algorithm for the standard
five-point finite difference discretization of the Poisson equation on a square, proving that the work required to
reach a given precision is O(N). In recent years, several pseudo-robust variants of CyfM have been proposed.
We proceed from the assumption that the robust multigrid technique (RyT) should be based on the following
components:

1. adaption of problems to a multigrid solver. This adaption allows us to derive problem-independent com-
putational part of RyT;

2. multiple coarse grid correction. The use of extra coarse grids make the task of the smoother less demanding;

3. vertex-and-cell-centered coarsening. The advantage of the coarsening is that the transfer operators are
problem-independent. What this means will be made clear in the sequel,

4. control volume discretization. Control volume discretization is more accurate than finite difference dis-
cretization for interface problems and lends itself to direct physical interpretation.
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This paper 1s concerned with the development of a single multigrid algorithm to handle all modified elliptic
PDEs on structured grids.

2. Multigrid structure. For simplicity, let us consider a one-dimensional problem and assume that a
uniform finest grid has been generated in the domain @ = [0, 1]. The computational grid G(0; 1) for the control
volume discretization consists of two sets of grid points GV(0;1) and GI(0;1):

The finest grid G/(0; 1) can be represented as a union of three coarse grids G(1;1), G(1;2), and G(1;3). Require
that all these coarse grids have no common points and each coarse grid point coincides with a unique finest grid
point:

G0;1) = G(13k) and G(Lin)NG(Lm)=0, n#m
k=1

The finest grid G/(0; 1) forms the zero level and the three coarse grids G(1;1), G(1;2), and G(1;3) form the first
level. The coarse grid generation is further recurrently repeated: each grid G(L; k), k = 1,...,3%, of a current
level L is considered to be the finest grid for the coarse grids G(L + 1;j), j = 1,..., 35+ of the next level
L+ 1. The nine coarse grids derived from the three grids of the first level form the second level, etc. The coarse
grid generation is finished when no further coarsening can be performed. It is clear that the finest grid can be
represented as the following union of all grids of each level L:

3L
G(0;1) = | J G(L;k) and G(Lin)NG(L;m) =0, n#m, L=1,... LT
k=1

Here LT is the number of the coarsest level. An example of the coarse grid generation is shown in Figure 1. In
what follows, the union of the finest grid and coarse grids will be called the multigrid structure (Figure 2).

Each grid of the multigrid structure has virtual grid points. Grids of the coarsest level have two virtual
grid points; therefore, the number of virtual points on some grid of the Lth level 1s 2 - 3LT-L  These virtual
grid points are intended for computation of a restriction operator of RyfT (Section 5).

The vertex-and-cell-centered coarsening used in RypfT consists of deleting two grid points from each sets GV
and G as shown in Figure 3. The mesh-size on a coarse grid of the Lth level is A3*, where A is the mesh-size
on the uniform finest grid G(0;1).

Assignment of a solution to the grid points ¥ or z' results in the vertex-centered discretization or cell-
centered discretization. Control volumes on the finest grid are defined as [zf_,, 2!] and [«}, xyy,], respectively.
Note that a control volume on a coarse grid G(L;k), k = 1,..., 3%, is a union of 3% control volumes on the finest
grid. Both these discretizations are not considered separately in RyfT.

Actually, the notion “a grid of the Lth level” means the one-to-one mapping of indices of the coarse grid
points onto the indices of the finest grid points. In what follows, the mapping will be denoted by the braces
{}. For example, the mapping of indices of the grid points from the set G¥(1;1) will be written down as Ty
where ¢ and {i} are the coarse and finest grid indices, respectively: {1} =3; {2} =6; {3} =9; ... (Figure 1).
The mapping of indices yields a close-to-the-finest-grid notation. In this case, the second order derivative can
be approximated as

f

8%u

0Mu|  _wgiony = 2ug +ugigy
Oz? a

A232L 4 O(A232L)

20!

Figure 1 shows that the approximation of this derivative at the grid points xf{’z} € GY(1;1) is expressed as

8%u

0"u g1y — 2uqsy +ugyy uz — 2ug + uo
Ox?

~ what really means
1) A232 ’ Y A232
2

Coarse grids for solving N-dimensional problems are generated in each space coordinate. Each level consists
of 3NVE coarse grids. The control volume on a coarse grid is a union of 3V* control volumes of the finest grid.

3. Description of the robust multigrid technique. For simplicity, let us consider the one-dimensional
problem

L 106, J0)= (1) =0 (1)



NUMERICAL METHODS AND PROGRAMMING, 2000, VoL. 1 85

=—— Domain boundaries ——m| o
c
el (05 7) B P T SN L P L 7
clolofofoloolofoloisielsfetsieiefeiefeie|ets|etelstelsielslelslelslelslelslelelpiclolclotolololotol (Y0 7)) @
¢Y(0; 7) el it |20 4% e 0 1% 18 e 2 B R 2030 |32 5 % e 4™ =
=
f . 5 _
I (7’7’) 3 2 1 ? 1‘ T ‘3 }4 T ‘6 T ‘8 F 1}0 TR 0(7'7)
G (7 7) -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10| 11 12 13 ’ _
[}
C{(7 2) 2 -1 o1 2 3 4 5 & 7 8 9 1|1 12 13 &
ofotofptetototofotototototstototo ((7;2)
G (7 2) 2 1 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 w
Gf(7 3) 2 <4 o 1 2 3 4 5 & 7 8 9 1w 1 12 13 i
o—fo—toftedf—edfofotototefofofotfotototo ((7,3)
0(7 3) 2 4 0o |t 2 3 4 5 6 7 8 9 1w |1 12 13 14
— | | | — c(2:1)
— | | | - ¢(2:2)
| | | | 0(2:3) 3
>
| | | | e G(2:4) 2
| | | 1 | c(2;5) 2
(@]
} } } 1 o 0(2; 6) b
V2]
| | | | | c(2:7)
o | | | - ¢(2:8)
1 1 1 1 G(2,9)
T T 1T T T T T 1T T T T T T T T T T T T T T T T T
—0.5 0.0 0.5 1.0 1.5
Fig. 1. Finest and coarse grids
Finest grid
PN
Zero level
First Ievel
Third level
Fig. 2. Multigrid structure
in © = (0,1). The exact solution of the problem is
flo) =10(e?+ (1—e)o—1) (2)

Before discretization, according to our approach, all problems to be solved should be modified into those
acceptable for R(T. The solution f of (1) may be represented as

f=c+f (3)

The function f will be an approximation to the solution f and the function ¢ will be a correction in the
succeeding multigrid iterations. Representation (3) is called the ¥-modification of a solution. Substitution of
(3) into (1) yields the following X-modified form of (1):

d%c 42 f

__lox_— f|an (4)

C|an

dz?
The ¥-modification is one of the possibl

dz?’

e ways for the adaption of (1) to

RyT.

Assume that a uniform computational grid has been generated and the function f i1s assigned to the grid

points 2V

. For a given PDE (or a system of PDEs), the required discretization (or grid) equations can be derived
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Fig. 3. Vertex-and-cell-centered coarsening in one dimension

in many ways. The control volume discretization is in most common use [4]. The computational domain is
divided into a number of nonoverlapping control volumes such that there is one control volume which surrounds
each grid point. The differential equation is integrated over each control volume. The most attractive feature
of control volume discretization is that the resulting solution would satisfy the integral conservation laws over
any group of control volumes. In addition, the control volume discretization 1s more accurate than the finite-
difference discretization for interface problems [2]. Integration of (4) over the control volume [af{i_l}, xf{l}] yields
the following finite-difference scheme:

f
Ty .
Cli-1} = 204} + Cfi1} _ _ 1 . &
AZ32L =Juy, where Jiy = A3 10e* — Tz dx (5)
f
Trizay

The values of ¢ at the grid points outside the domain €2 can be eliminated by the following interpolation formulas:
a) the Dirichlet boundary condition at # = 0:

2

_1 _1
= et ¢lpmo +2 S S cpa} + o(A3%F) (6)

3 C{l}_f—l—l

b) the Neumann boundary condition at # = 0:

2A3L de 13 26 —1
=" 4> _ st A333L
o} %+ 1 dr x:O—I_ 2€+16{1} 2€+1C{2}+0( 3°%) (7)
c) the Dirichlet boundary condition at # = 1:
2 £-1 £-1 3931
= — 22— - A
C{H+2} ) CIx:l + ¢ C{Hp+1} E+1 C{H;} t o(A”3°) (8)
d) the Neumann boundary condition at # = 1:
2A3L de 13 26 —1
— ac 4 _ A333L 9
ety = 5631 du|,_, A gE 1 e T gy Al ol ) )
Here Y
x
{1}
=0
D STy :
1-— x\{/HL-I—l} b1
A3L T

As an example, we consider the three-level algorithm. The grids of the multigrid structure are visited in a
sawtooth-cycle manner. The sawtooth cycle is a special case of the V-cycle in which smoothing before coarse
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grid correction (pre-smoothing) is deleted [2]. Tterations start from the coarsest level (Figure 2). Consider some
grid of this level (Figure 4). The integrals Jy;} in the right-hand side of (5) should be computed before the
smoothing iterations. Since the control volume [xf{l}, Jf{z}] of the coarse grid is a union of the nine control
volumes on the finest grid

[xf{l}a xf{Z}] = [l‘g, xf14] = [l‘g, l‘g] U [xf6a xf7] u.--u [xf12a xf13] U [xf13a xf14]

the integral Jys) can be computed as

., 1 ’ & f ’ & f
L=2 __ T T

Let us denote

I/'f
1 ¢ T de z? fm—l_Qfm+fm+1
R;:K / (106 —@) de =10e"m — e + 0(A?)
oh_y

It 1s clear that the integrals R} are residuals of the discretization equation computed on the finest grid. Thus,
the integral Jys) can be rewritten as

Iy = %(Rg + -+ Ri,) +0(A?)
It is easy to see that the integral J is the arithmetic mean value of residuals computed at the finest grid
points z} € [xf{l}, xf{z}]. The integral J is a restriction operator of RyfI'. Since the integrals Jy;; are computed
on the finest grid, accuracy of the computations is independent of the mesh size on coarse grids. Generally,
the restriction operator uses 3V% finest grid points for averaging the residual on grids of the Lth level. The
three-level algorithm is considered here only to emphasize the feature of the restriction operator.

Similar computations (evaluation of the integrals and post-smoothing) are performed on each grid of the
coarsest level (Figure 2). When the coarsest level solution has been obtained, the transfer to the next finer level
is performed as shown in Figure 5. It should be noted that the transfer does not add any interpolation errors in
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Table 1. Evolution of error in R(YT (left) and CyM (right)

Level || Grid Error E Grnd Error E

— — 2.12-10%° — 2.12-10%°
1 1 2.17-1072 1 3.48 1073
1 2 4.49-1073 — —

1 3 9.41-1073 — —
0 1 3.84-1073 1 5.03- 1072

the correction e, since all coarse grids are subgrids of the finest grid (Figure 1). The transfer is a prolongation
(injection) operator of RyT.

Smooth parts of the error are deleted on all grids of the next finer levels in a similar manner (i.e., computa-
tion of the integral J and the use of smoothing iterations). The restriction operator on the first level is defined

by .

Tyt =5 (B + R + Bippa) +o(A7)
The coarse grid correction to be added to f on the finest grid is ¢ (f = f+ ¢). The multigrid iterations
repeatedly improve the approximate solution f until the current approximation becomes accurate enough.

To illustrate RyfT in the step-by-step manner, we solve (1) with a uniform grid (A = Ho™' = 0.1, two level
structure: LT = 1), starting iterand zero. Let us consider only the first multigrid iteration. Computations start
from the first grid of the first level: {1} =3, {2} = 6, {3} = 9 (Figure 6). Next, the discretization equation is
solved on the second grid ({1} = 1, {2} =4, {3} = 7, {4} = 10) of the first level. Finally, the discretization
equation is solved on the third grid ({1} = 2, {2} = 5, {3} = 8, {4} = 11) of the first level. All numerical
solutions are shown in Figure 6. The next step of RyfI includes the transfer to the finest grid. Actually, the
transfer consists in the change of the one-to-one mapping of indices: {i} = i. Three Gauss—Seidel iterations
(v = 3) are performed on the finest grid to delete rough parts of the error. In order to estimate the efficiency
of R\T, we define an error of the numerical solution as follows: E = max; |f(xf{’l}) —cqiy|. Here f is the exact
solution given by (2). Evolution of the error is shown in Table 1. The first row of the table corresponds to the
starting guess.

In addition, we solve (1) by C\M (the sawtooth cycle and linear interpolation). The numerical results
obtained are shown in Figure 6 and Table 1.

Our numerical experiments showed that it is very difficult to compare the convergence rates of RyfT and
CyM. On the one hand, BT approximates the long wavelength parts of the error on coarser grids more
accurately than CyM. It 1s expected that RyfT requires the least number of the multigrid iterations to obtain a
numerical solution. In general, RyfT uses the least number of levels to compute the correction ¢. On the other
hand, computational cost of the robust multigrid iterations is higher than that of the classical iterations. Note
that the comparison between RpfT and CyM 1s problem-dependent.

4. Advantages of the robust multigrid technique. Let us summarize the advantages of RyfT over
CVM and clarify some details of the technique.

1. Extremely accurate formulation of discrete problems on coarse grids. As an example, we consider the
two-dimensional problem

0?u  0%u
@—i—@—i—’y(l‘,y)U:F(l‘,y), u|6Q:g

in © =(0,1) x (0,1). This problem can be rewritten in the ¥-modified form as follows:

d?c 0% 0
@—I-w—l—'y(x,y)c:r(x,y), lon =9 — tlyq
Here
8%u 9% .
r(ey) = Fla,y) - 55 = 55 — (@)

Assume that the functions « and c are assigned to the grid points (z¥,y"). Integration of the above ¥-modified
equation over a control volume ;5

Q{Z’j} = {(x,y) |l’f{z’—1} AN xf{i}’yf{j—l} LY< yf{j}} (10)
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A2 32L

1
(Vi) = EA

f
Ty

/

f
Yy

y(z,y) dy dw

f f
Tl-1y YG-13

(11)

In order to formulate the discrete problems with extreme accuracy on coarse grids, the integral J and the
coefficient (y) must be computed on the finest grid. This allows us to decrease the order of approximation down
to o(A?). The resulting linear system may be abbreviated as

Ax =0b
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In fact, we have a perturbed system

where the errors of the coefficient matrix (§4) and right-hand side vector (dp) result in an error (d;) of the
solution. Accurate computations of the coefficient {y) and integral J minimize the errors 4 and 8y, and, hence,
8, Accuracy of the correction ¢ depends only on the number of smoothing iterations and the mesh size on a
given grid.

Now we explain the X-modification of PDEs. At first, recall a similar procedure in CyiM [2]. Let us consider
a linear problem

L(u) =f, ulpg =g (12)

where £ is some linear differential operator. Problem (12) can be discretized using finite differences. The
resulting discretization equations are written down as

Au=1b (13)

Let 4 be an approximation to the solution of (13). The error e = 4 — u is to be approximated on the coarse
grid. We have
Ae=—-r=Aa->

The coarse grid approximation @ of —e satisfies
Au = Rr (14)

where R is a problem-dependent restriction operator of CyM. In the two-level algorithm it is assumed that (14)
is solved exactly. The coarse grid correction to be added to @ is Pu:

i :=1 + Pu

Here P is a problem-dependent prolongation operator of CyiM.
Contrary to CyM [1], RMT can be understood as a fixed algorithm that consists of the following steps.

Step 1: Adaption of problem (12) to RyT. The linear problem can be rewritten in the X-modified form as
Lle)=f—L(a), clog =9 — tlsg

Step 2: Generation of the multigrid structure.

Step 3: Control volume discretization of the modified problem. Integration of the Y-modified problem over a
control volume VgL on some computational grid g of the Lth level yields

1 1 )
V_gL / Le)dv=J, where J = V_gL (f — E(u)) dv
Vi Ve

The integral J is similar to Rr in Cy\fM. The discretization equations can be written as
Ac=J
Step 4: Multigrid iterations (the sawtooth cycle). The coarse grid correction to be added to @ is ¢:
U:=u-+e

At first glance, the ¥-modification v = 4 + ¢ in RyfT is similar to w = 4 — e in C\jM, but it is this combination
of such adaption of problems, original coarsening and control volume discretization that yields the extremely
accurate formulation of discrete problems on coarse grids. As a result, this accurate formulation makes it
possible to avoid the necessity of pre-smoothing in the multigrid iterations. Another variant of adaption of
problems to R(T (so-called TI-modification) will be discussed in Subsection 7.4. Actually, the adaption of
problems is the only problem-dependent component of RypT.

2. Improvement of numerical solutions. It is desirable that the coefficient matrix of the resulting linear
system be an M-matrix [2]. In order to obtain an M-matrix in applications of computational fluid dynamics
(CFD), the first derivatives in momentum or transport equations are often discretized by upwind discretization.



NUMERICAL METHODS AND PROGRAMMING, 2000, VoL. 1 91

However, the upwind discretization reduces the approximation order. To illustrate this difficulty, consider the
one-dimensional convection-diffusion equation

du du
—+e

dr T gz

The representation of the first derivative by means of central difference leads to the following finite-difference
scheme

Ujp1 — Uj—1 L Uip1 — 2u; + U

2A A? =0

This scheme has the second approximation order o(A?); however, to obtain an M-matrix, the computational
grid should satisfy the condition A < 2. On the other hand, the representation of the first derivative by the
upwind difference allows us to obtain the M-matrix

Ujp1 — Uj Uip1 — 2u; + U

A A? =0

However, the upwind discretization reduces the approximation order down to o(A). In classical solvers, the
discretization equations can be modified to increase the approximation order. It is clear that the scheme

u n+1 un+1 _ 2U?+1 4 un+1

n+1 n n n n
i+l Y Lo it i1 Wi — W Uy — Uy
A A? A 2A

yields the M-matrix and the second approximation order for a convergent solution. The equation adapted to
RMT can be written as

f
Ty

1 de d’c du d?u
Aol / (E-I-E@) dr = Jyy, where r(x):—%—gw

71y

Both sides of this equation may be discretized separately. The left-hand side of the equation is discretized by
using the upwind difference to obtain the M-matrix as follows:

qHH‘%ﬁ+EQHH—QQﬁ+QFH
A3L A232L

= J
The integral J should be computed on the finest grid to reach the second approximation order in a way that

am+1 - am—l am+1 - 2am + am—l
R =— A —¢ A2 +0(A?)

Tt is easy to see that the convergent solution (i.e., ¢ = 0) will have the second approximation order. In comparison
with QyiM, BypT does not require any artificial modification of the discretization equations to obtain a more
accurate numerical solution. Instead, separate discretization of the left-hand side operator and right-hand side
integral can be used to overcome the conflicting situations (for example, the M-matrix vs accuracy). It may be
noted that for a single-grid solver ({i} = ¢) the separate discretization is about equally efficient as the defect
correction [5]. An example of application of the separate discretization to solve the Poisson equation will be
given below (Test 2 in Subsection 7.1).

3. Original coarsening. Vertex-and-cell-centered coarsening used in Ry incorporates the advantages of
vertex-centered and cell-centered coarsening. In addition, this coarsening reduces the number of levels without
deterioration of convergence. The generation of the coarse grids in RyfT is independent of location of control
volumes on the finest grid. As opposed to C\fM, the control volumes should be specified before discretization
of PDEs on the multigrid structure.

4. Incorporation of the control volume discretization and multigrid iterations. This incorporation simplifies
the development of an efficient multigrid solver for a large class of physically meaningful problems. In addition,
the discretization admits a direct physical interpretation.

5. Problem-independent transfer operators. The proofs of mesh-size independent rate of convergence of
CMM assume that the transfer operators satisfy a certain condition [2]. The transfer operators of RypT are
independent of the smoothers, problems to be solved, unknown ordering, grid aspect ratio, etc. The most
obvious example for illustration of the advantage of the prolongation operator is interface problems. Since the
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linear interpolation across discontinuities is inaccurate, C\[M requires the operator-dependent prolongation to
handle these problems [6]. The absence of any interpolation in RpT results in the absence of such difficulties
(Subsection 7.3).

6. The most powerful coarse grid correction strategy. The multigrid structure is an example of the most
powerful coarse grid correction strategy where the most Fourier modes of the error are approximated on the
coarse levels in order to make task of the smoother the least demanding. Moreover, the transfer operators do
not contribute any error to the numerical solution.

7. The simplest multigrid cycle. RyT uses the simplest multigrid schedule (namely, the sawtooth cycle).
Pre-smoothing in CyfM leads to certain difficulties when solving nonlinear equations [2]. The absence of pre-
smoothing in Ry[T results in the absence of such difficulties.

8. Ezpanded robustness. The expanded robustness of this multigrid technique is a result of adaption of
equations, extremely accurate formulation of the discrete problems on the coarse grids, original coarsening,
the most powerful coarse grid correction strategy, construction of problem-independent transfer operators, and
absence of pre-smoothing and interpolation.

9. Black box properties. Since the main components of R(T (generation of the multigrid structure, one-to-
one mapping of indices, and computation of integrals) are problem-independent, they can be realized as black
box subroutines. In addition, discrete problems on the multigrid structure are specified in a close-to-the-finest-
grid manner (for example, (5)). The introduction to the FORTRAN implementation will be given in [7]. The
main difference between Ry[T and single-grid smoothers consists in the approximation of boundary conditions
on coarse grids ((6) - (9)).

All numerical tests in this paper are performed without any change of components of RyfI. We use Al-
ternating Line Gauss-Seidel (ALGS) in the numerical experiments for simplicity of programming. Theoretical
analysis shows that ALGS is found to be a robust smoother for many problems [2]. In addition, this smoother
does not require a global linearization of the nonlinear discrete problems. For simplicity, it 1s assumed that the
solution is assigned to the grid points (2V,4"). The point Gauss-Seidel smoother and staggered grids will be
discussed in our following publications.

The only disadvantage of RypfT consists in an increase of computational efforts per multigrid iteration as
compared with CyfM. This fact is discussed in Section 8.

5. Computation of integrals. Evaluation of integrals is the most important component of RyfT. Their
direct computation on the finest grid described in Section 3 requires excessive efforts. However, the properties of
the coarse grid generation allow us to propose a fast method for evaluating integrals. Assume that the integrand
r(z) is defined to be zero outside the domain Q. Let us define a characteristic function T(x) such that

T(l’):{?’ i;g f(x):{g(’x) i;g

1 Ji;
L _ i
ot {i}
{i-13
where
f f
) iy ) iy
J{LZ»} =X / 7(z) dw and A@»} =X / T(x) dx
x?z—l} x?l—l}

Here ALi is the number of actual control volumes on the finest grid that form the control volume on some grid.
The evaluation of the integral J on the L*th level starts from the finest grid. At this stage, we compute

f

xr I/'En
- Sr— 1 - 1 1 o EQ
Jé_ozjé_ozz/r(x)dx, x, €Q and A#‘OZZ / T(x)dx:{oz ig;@
oh_y oh_y

Since each control volume on a coarse grid of the Lth level is a union of the three control volumes on the finer
grid of the (L — 1)th level, the integrals J£ and AL can be computed starting from the first level down to the
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L*th level by the following recurrence formulas:

AL—1 AL—1
J{} J —I—J{} +J

{} 3L1 {}+3L 1 L_l L*
L L -1 I
Afy = Al H AT A s

Finally, the integral J** on the L*th level is computed as was done for (15). We used 2 - 3LT-L yirtyal grid
points only for the above evaluations of the integrals.

Multidimensional integrals can be computed as iterated one-dimensional integrals. Let us define one work
unit (WU{0}) as the amount of computing work required for the computation of the integral J on the finest
grid. The total amount of the work for evaluation of N-dimensional integrals on all grids of the Lth level is
given by

WUx{L} = WU{0} + ®NL fp.o.

(floating point operations), where o = 2-3" — 1 and N is the number of the finest grid points. Assume that

_ 1 1gN
e the coarsest grids have 3%V points: N = VLT o o+ = —%7
N lg3
e amount of the work for calculation of integrals on the finest grid is proportional to the number of grid
points: WU{0} = C/N, where C7 is a problem-dependent constant.

In a large memory computing (LMC), the integrals are computed only once on each level before the use of each
multigrid iteration, and their values are stored in the core memory. In this case, the total work can be estimated
as

_ _ lgN
WUy = WU{0} + @NLT =N (C'I + Egg— - w) f.p.o.

LMC requires extra computer memory for storage of NL% single precision numbers (Real * 4).
In a small memory computing (SMC), the integrals are computed on each level before the use of the
smoothing iterations and, their values are not stored in the core memory; therefore,

ngN wlgN w@
(C 9N 123 5 ) f.p.o.

WUE_ZWU{O}—I—wNZl_ N 153

Thus, the total amount of work for computation of the integral has the following asymptotic behavior:

O(N lgN) — large memory computing (LMC),
WUg = { O(N Ig? N) — small memory computing (SMC) , as N — 400
O(N?) — direct computing,

6. Computational work. Let us introduce the concept of equivalent number of iterations. Assume that
v{L;g} iterations are performed on each grid g (1 < g < 3V%) of the Lth level. The equivalent number of
iterations is the following grid-averaged number:

3NL

AL = oxp X wLia)

According to the main feature of the multigrid structure (the absence of common grid points on various grids of
the same level), the computational efforts for &{L} iterations on all grids of the Lth level and on the finest grid
are approximately the same. The concept of equivalent number of iterations makes 1t possible to compare the
amount of computation on different levels. Following Brandt [8], one work unit is defined as the work involved in
one smoothing iteration on the finest grid. For simplicity of theoretical analysis, assume that the same number
v of smoothing iterations is performed on each grid: #{L} = v, 0 < L < L*. The computational work required
for one equivalent iteration of ALGS is expressed as

2D problems: 2Hg (8H, — 6) a7 16N

_ ¢ =8N(N-1)N fpo.
3D problems: 6HZ (8Hg — 6) ~ 48N
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Table 2. Distribution of the computational efforts (LMC)

component v=1|v=2|v=3|rv=4 v=
the smoothing procedure (ALGS) | 47.5% | 64.4% | 73.1% | 78.4% | 81.9%
the transfer operators 52.5% | 35.6% | 26.9% | 21.6% | 18.1%

Table 3. Comparison of LCM and SMC (v = 3)

N 10® | 10* | 10° | 10° | 107 | 10%
2D problems | 0.88 | 0.78 | 0.71 | 0.65 | 0.59 | 0.55
3D problems | 1.00 | 0.92 | 0.84 | 0.78 | 0.73 | 0.69

where N = (Hg+1)" &~ A=". The computational work required for the smoothing procedure can be estimated
as

8(N —1)v

SN(N — )wN(LT +1) = 3

NlgN ~ 16(N — 1)y NIgN fp.o.

Consider LMC and assume that C; = @ = 2- 3" — 1. The distribution of the computational efforts is given by

237 1 ) tation of the integral

~ — computation o € mtegrals
2.3V 148N —-1)Nv ~ 9+8v
8(N —1)Nv 8v

TN I8N )Ny a el the smoothing procedure (ALGS)

Table 2 reports the distribution as a function of the number v of smoothing iterations.
Consider SMC and assume that C; = 0.5 = 3 — 0.5. The distribution of the computational efforts is
given by

(2.3 —1)1gN . .
— — computation of the integrals
(2-3V —1)IgN + 8(N — 1)N?v
8(N — 1)N?v

— the smoothing procedure (ALGS)

(2-3V —1)IgN 4 8(N — 1)N2v
In order to estimate the influence of costs of SMC on the total work, assume that the computational efforts for
the evaluation of the integrals are less or equal to the efforts for the smoothing procedure:
(2.3 —1)1gN 1

_ <= = lgN <4(N - 1)N?p3~—N
(2-3V —1)IgN +8(N — 1)N2p = 2 & ( INTw

SMC of the restriction operator will be more effective for medium-size problems:

and v =3

N < 450 x 450, 2D problems
=~ | 450 x 450 x 450, 3D problems

To compare the efficiency of the methods for computing the restriction operator, consider the ratio of the total

efforts for LMC and SMC
total efforts for LMC N 3NN 4+ 4(N —1)N?v

total efforts for SMC ~ 3N g N + 4(N —1)N?v

Table 3 represents this ratio. Of course, extra computer memory (N L7 single precision numbers) in LMC leads
to the reduction of computational time.
In general, the multigrid methods can solve many problems at a cost of O(N lgk N) f.p.o., where

0, classical multigrid methods
k =< 1, robust multigrid technique (LMC)
2, robust multigrid technique (SMC)

7. Numerical experiments. Our Ry[T consists of two parts: the analytical modification of the boundary
value problems and the multigrid algorithm for solving the discretized modified equations. In this section, we
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consider the standard model problems to show that the multigrid part of RypfT is independent of problems to
be solved.
Let us consider a boundary value problem
0 ou 0 ou
— | A® — — | A —_— U+ F =0 Ul = 16
in Q = (0,1) x (0,1). The X-modification of its solution U(z,y) = C(x,y) + U(J:,y) leads to the following
Y-modified form of (16):

d oC d oC .
- z = - Y el _ .
o </\ (z,y) 31‘) + 39 </\ (z,y) ay) +7(x,y) C =r(x,y), Clog=9-Ul,q

Here

e u) = Fle.) ~3(e) U~ (wx, . g—U) -2 (Ay(gg, ) g_g)

Assume that a uniform computational grid (A = Ho_l) and the multigrid structure have been generated, and
that the functions C' and U are assigned to grid points (2",y"). Integration of the ¥-modified equation over
control volume (10) yields the following finite-difference scheme:

+ Clityy — Cujy Ctijy — Cri—1yy

(in— aeger Ll Azgen an
+r%ij}0{”2§—32f“” - F?ij—l}%lz—% + sy Crigy = i)
Here
) vy ) Ly
(i)} = A3L / AT (l’f{}y) dy,  Tip =50 / A (x’ygﬂ) du (18)
Vi1 -1y

are the averaged values of the coefficients A”(z,y) and AY(z, y) along the boundaries of the control volume. The
coefficients () given by (11) are the integral mean values of the function vy(z, y) over the control volume. The
integral J on the finest grid is computed as follows:

Um+1k - Umk z Umk - Um—lk

R:;@k = —Imk — <7>mk Umk - ankz A2 — tm—1k A2 (19)
Umk+1 - ﬁmk ﬁmk - Umk—l
_FszT - FZ@I@—IT + O(AZ)

In general, the integrals T%, TY J and the coefficients (y) should be computed on the finest grid with an
accuracy of o(A?) to obtain the extremely accurate formulation of the discrete problems on the coarse grids
(Section 5). In our numerical tests, it is accepted that:

1) the exact solution of a model problem is Uc(z,y) = f(2)f(y), where the function f is defined by (2).
The function F' is obtained by substitution of the exact solution into (16). In this case, ¢ = 0;

2) a starting guess is taken to be zero: U%(z,y) = 0;

3) error of the numerical solution is defined as E = max;; | Ue (2}, y) — Usjl;

4) three smoothing iterations are performed on finer levels: v =3, 0< L < L*.

7.1. The isotropic equation. (A" = AY = 1; v = 0) For given A%, AY and ~, we have from (18) that
Ffij} = F%{Z.j} =1 and (y){i;; = 0. Two tests were performed as a numerical experiment:

Test 1: The five-point discretization of the Poisson equation ((17)-(19))

Cri—1jy — 20051 + Critayy N Clij—1y — 20551 + Clij+ny
AZ 32L AZ 32L
* Um—lk - QUmk + Um+1k Umk—l - QUmk + Umk+1

mik = —Lmk — A2 - A2 +o(A%)

= Jiijy

Test 2: The (five4nine)-point discretization of the Poisson equation. Unfortunately, the high-order accuracy
cannot be obtained directly on the multigrid structure. Accuracy of the numerical solution depends strongly
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Test 2
1.E+01 4 Test 1 1.E+00
1.E4+00 1\e=7|9=2|9=3|q9=4 | 9=5|q=6 | ¢=7 1.e-01
1E-01 1 s 1.£-02
1.6-02 { i=2 1.8-03
1 E—03 1 g 1.£-04
1.6-04 4 i R 1.£-05
E I M 1 E—06
1.£-05 1 \- IR 107
1.6-06 1 1.6-08
1.E-07 1 1.£-09
1.E-08 1 1.E-10
1.E-09 1 - 1.E-11
1.E-10 +——— 1.E=12 + T T T T T T |
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v

Fig. 7. Convergence behavior in the first and second tests on the finest 111 x 111 grid

Table 4. Multigrid convergence in the first test

Finest Grid | LT | 0y | ¢ Pq Po E
16 x 16 1 |56 |40012|0.726 | 1.66-1073
41 x 41 2 |60 | 4]0.013]0.747 | 2.34-107*
111 x 111 3 | 64| 4]0.011]0.754 | 3.09-107°
351 x 351 4 |80 | 4]0.014 | 0.806 | 3.08-107°
1001 x 1001 | 5 | 89 | 4 | 0.029 | 0.852 | 3.90-10~7

on the approximation of the boundary conditions on coarse grids ((6) —(9)). The five-point discretization of the
left-hand side differential operator and the nine-point discretization of the right-hand side integrals R* yield
a more accurate solution. Assume that the solution of second order accuracy has been obtained (Test 1). To
obtain the solution of fourth order accuracy, the integrals R* must be computed as

Um— + 4Umk 1+ Um 1k+1

AZ 62F 62F 1 / 1k+1 / + / +1k+

ok = — Pk + T (3? + W) ~GAZ + 4qm—1k — 20 [{mk + 4[{m+1k + 0(A4)
mk + Um—lk—1+ 4Umk—1+ Um+1k—1

The convergence behavior in the first and second tests is shown in Figure 7. The average reduction factors p,
and p; are defined as
1RO\ . 1RO
o (||R<0>||) S <||R<0>||)
where || - || is the lo-norm, R is the residual on the finest grid, R(Y) is the initial residual, and ¢ is the number of
the multigrid iterations. Table 4 represents the average reduction factors as a function of mesh size in the first
test.

Note that the average reduction factor p, does not allow us to make accurate comparison between CyM
and RpT. Generally, this factor can be used only to estimate the efficiency of different variants of CyM.
A more accurate comparison should consider the reduction factor p; as a function of computational efforts.
Experimentally, for the Poisson equation, Ry[T achieves a reduction of the residual by a factor of 0.01-0.03 per
multigrid iteration. This is in contrast to a factor of 0.125-0.250 for CyfM [9]. On the other hand, there is a
penalty for R(T in the computational efforts (Section 8).

7.2. The anisotropic equation. (A” > A or A" < AV ; v = —0.25) Following Hackbusch [1], consider
the boundary value problem

y

Moz A

02U 02U
o )2 U+ F(z,y) =0, AT A >0

1
4
in Q@ =(0,1) x (0,1).

Test 3: The five-point discretization; uniform 151 x 151 finest grid (Lt = 3). In this case, Ffij} = A7,

F%{Zj} = A, and (v){;;3 = —0.25. Table 5 represents the average reduction factor of the residual p, as a function
of A% and M.
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Table 5. Multigrid convergence (pq) in the third test

AP\AY | 1073 | 1072 | 107t | 10%° | 10*! | 10%% | 1073
1073 | 0.003 | 0.038 | 0.035 | 0.002 | 0.000 | 0.000 | 0.000
1072 | 0.038 | 0.008 | 0.101 | 0.039 | 0.002 | 0.000 | 0.000
10~ | 0.035 | 0.101 | 0.010 | 0.125 | 0.040 | 0.002 | 0.000
10t% | 0.002 | 0.039 | 0.125 | 0.010 | 0.125 | 0.040 | 0.002
10T | 0.000 | 0.002 | 0.040 | 0.125 | 0.010 | 0.125 | 0.040
102 | 0.000 | 0.000 | 0.002 | 0.040 | 0.125 | 0.010 | 0.127
1072 | 0.000 | 0.000 | 0.000 | 0.002 | 0.040 | 0.127 | 0.010

Theoretical analysis shows that ALGS is a robust smoother for the anisotropic diffusion equation [2], but the
most powerful coarse grid correction strategy in RyfT makes it possible to avoid the necessity of line smoothers
for anisotropic problems.

7.3. Discontinuous coefficients. Discontinuous coefficients requires special treatment in the CyM
context. Much has been written in the CyM literature about the pros and cons of various prolongations in
different classical multigrid algorithms [2]. We will not go into this here.

RMT does not require any sophisticated implementations of the transfer operators for different problems.
Assume that the discontinuities of the coefficient A%(z,y) lie at boundaries of control volumes (Figure 8). In
this case, the coefficient T'Y. ., in (17) is defined as

{ij}
fw.. fw , r* — V.
I = ol o= e
(1= iy + Ty
where
s
v _ 1 A (xY d
Min =5z (i, v) dy
Yi-n

When the discontinuity of A” (z, y) is located between the grid points xf{’i} and Y we obtain

{i+1p
* v oV * _ T _ {U} {H‘l]}
{ij} {i+15}

where I'{;;, is the harmonic averaged value of ffij} and f?i+1j} [2, 4, 10].

Following Wessiling [10], consider the model problem (Figure 8)

0 ou 0 ou
Z [ il Z [ i -0 Ul = 2 2
(e ) g (Ve G ) F =0 U=ty

Test 4: The five-point discretization; uniform 151 x 151 finest grid (L* = 3); A = 1. Table 6 represents
the average reduction factor of the residual p, as a function of A;.

Comparing the rate of convergence that are reported one gets the impression that RyfT is at least as efficient
as C\M.

7.4. Nonlinear equations. In recent years, several classical multigrid algorithms for solving nonlinear
problems have been proposed and developed [2]. The absence of pre-smoothing in RyfT impressively simplifies
nonlinear robust iterations. To illustrate a formal application of Ry[T to some nonlinear problems; consider the
following model problem:

0*U  9%U

W+8—y2—O[U2+F(I,y):O, U|6Q:0’ OZ>0 (20)
The function F is chosen so that the solution is Ue(z,y) = f(x)f(y), where f is defined by (2). Equation (20)
may be rewritten in the X-modified form as
*U 09U

o*Cc  9*C
927 " gz TV

527 gy~ (O H200) = 1(e,y), r(e,y) = —F(z,y) -
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' ~0.09 Interface
v f \
A Ty Ty . Liie
T
O  Vertex of the finest grid
0 1 7)( @ Vertex of a coarse grid of the second level

Fig. 8. Geometry of the model problem and location of an interface

Table 6. Multigrid convergence in the fourth test

10°
0.188

10°
0.170

10*
0.144

103
0.123

102
0.106

10t
0.064

10°
0.016

Pq

Assume that a uniform finest grid (A = Ho_l) has been generated and the function U is assigned to the
grid points (2¥,y"). Integration of the ¥-modified equations over a control volume yields the following finite-
difference scheme

Liiy(C) = o(CFigy + 2006 (U agy) = Ty
Here L;;1 is the standard five-point representation of Laplacian and

f
Yy

S .
O(e,y)dyde, ©= (@) o=

1 U
e{ij} = AZ232L (r)
f f

Tl-1y YG-13

and the integral J can be computed on the finest grid (L = 0) as follows

ok = — Pk — Lo (U) 4+ Ul + 0(A7) (U) e = Ui + 0(A7)

It is necessary to remember that the integrals J and <U> are computed on the finest grid with the approximation
order o(A?) to obtain the extremely accurate formulation of the discrete problems on coarse grids. The nonlinear
Y-modified problem can be linearized and solved iteratively on each grid of the multigrid structure, for example,
by Newton—Raphson’s method. This works well as long as the Jacobian of the nonlinear discrete problems is
nonsingular. The nonlinear RyT can be used efficiently, because the global system is not linearized.

Test 5: Uniform 361 x 361 finest grid (L1 = 4). Table 7 represents the average reduction factor of the residual

pq and the error E as a functions of parameter o. Of course, computation of (U) increases the computational
efforts per robust multigrid iteration approximately by

2.3V +4(N - 1)Nv
3N 4+ 4(N - 1)Nv

=1.27

times (LMC at v = 3) as compared with o = 0. R
It should be noted that the II-modification U = C'U of some nonlinear equation
N 1 =1
(@) _ ) ) q
U = {U@—l)c(q—l),q o1

Table 7. Multigrid convergence in the fifth test

o 1073 10-2 1071 10+° 10+t
Pq 0.015 0.015 0.014 0.012 0.008
E | 291-107% | 2.90-107¢ | 2.81-107% | 2.09-107° | 5.81-10~"
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may be more preferable than the X-modification. For example, the e-equation of the Launder—Sharma model [11]
may be written as

2
I (pue) n I (pve) _ 9 Ne8—6 +i ﬂ86—6 L AL _BE Lk
Ox Oy Ox Ox Yy Yy

where

He u\ ou\’ ppe [ 0%u\’
fe = pt+ —, A=Cafipe | | =) + | 5 , B =Ceafap, E=2—| =
o Ox Jy p \Oy?

The TI-modified form of the e-equation (¢ = ¢.€ and K = ckl;') is given by

O(pu*cc)  Od(pv*e.) 0 L Oce 0 L Oce . Ce L (ce)?
Ox + dy Oz Fe oz + a +4 B +E

dy \"° Oy Ck Ck
where
~ 2 o2 o2
A*:Ai, B*:BET, T u*:ué—&—g, vt = e = He &
k k p Ox p Oy

The II-modification does not change the form of the e-equation.

8. Robustness versus efficiency. The dilemma of robustness versus efficiency appears in various fields
of numerical mathematics [2]. BpT requires the least number of iterations to obtain a numerical solution;
however, computational cost of the iterations is high enough. Therefore, CA\fM can be more efficient for solving
the simplest problems than RpfT. On the other hand, Cp\fM can be an inefficient solver for the complicated
problems, which can be solved effectively by RypfI. In general, comparison between CyjM and RpfT is problem-
dependent.

Let us estimate a maximum penalty in computational efforts for R(MT. Assume that some problem (for
example, the Poisson equation) can be solved efficiently by CyM (the multigrid schedule is V-cycle, the smoother
is ALGS, the cost of the transfer operators is C7N f.p.o.). The cost of each classical iteration can be estimated
as

L+
_ B _ 2V 41
(8(N —1)Nv+Cp)N 2?_0;2 M1~ (8(N—1)NV+CT)Nﬁ

The cost of each robust iteration (LMC) can be estimated as

The ratio of total computational efforts takes the form

G2V +1INS(N-1)Nv+Cr 1
L2y —12 8N —1)Nv+Cy IgN

where ¢f and ¢f are the numbers of classical and robust iterations, respectively. Assuming that ¢% = 2¢%, and
8(N — 1)Nv > max(Cr, Cr), we obtain

total efforts in QM 2V 41 N
total efforts in RyfT 2NV — 11gN

This estimate shows that there is no drastic penalty for RyT in computational work (Table 8). From the
practical point of view, for very simple problems the computational time for C\fM is several times less than it
for RpT. This 1s an unavoidable penalty for the expanded robustness.

Acknowledgments. The author is indebted to R.P. Fedorenko for his valuable comments. We also thank
the referees for a very critical reading of the manuscript which resulted in a few corrections and impressive
improvements in the exposition.

9. Conclusion. Very simple PDEs are solved for demonstration of robustness and efficiency of RyT. All
model problems require only a single ¥-modification for their adaption to RyfT. Consequently, the next step in
the development of RyfT will be the systematic investigation of methods for adaption of PDEs to this technique,
since the other components of Ry[IT' are problem-independent.
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Table 8. Estimation of the ratio of total efforts (CyM vs RyT)

the number of grid points (N) | 10* | 10° | 10 | 107 | 10® | 10°

2D problems 0.83 1 0.67 | 0.56 | 0.48 | 0.42 | 0.37

3D problems 0.96 | 0.77 | 0.64 | 0.55 | 0.48 | 0.43
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