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УДК 519.688

A GLOBALLY CONVERGENT CONVEXIFICATION ALGORITHM

FOR THE INVERSE PROBLEM OF ELECTROMAGNETIC FREQUENCY

SOUNDING IN ONE DIMENSION

M.V. Klibanov1 and A. Timonov1

Рассматривается глобально сходящийся алгоритм для численного решения обратной задачи
электромагнитного частотного зондирования. Алгоритм реализует недавно предложенную ав-
торами концепцию конвексификации (т.е. обеспечения выпуклости целевой функции) многоэкс-
тремальной целевой функции, появляющейся в результате использования нелинейного метода
наименьших квадратов. Основной особенностью алгоритма является то, что в отличие от мето-
дов “обдирания слоев” он обеспечивает устойчивое приближение посредством решения конечной
последовательности задач минимизации строго выпуклых целевых функций, которые строятся
с помощью нелинейного метода наименьших квадратов с карлемановскими весами. Предложен-
ный алгоритм обеспечивает сходимость к “точному” решению независимо от выбора начального
приближения. Это устраняет неопределенность, присущую градиентным или ньютоновским ме-
тодам. Обратная задача магнитотеллурического зондирования выбрана в качестве модельного
примера. Основываясь на свойстве локализации карлемановских весовых функций, доказыва-
ется, что расстояние между приближенным и “точным” решениями мало, если малы ошибки
в данных. Приводятся результаты вычислительных экспериментов, в которых используются
модельные и реальные конфигурации, встречающиеся при магнитотеллурическом зондирова-
нии морских шельфовых зон. Результаты этих экспериментов демонстрируют применимость
предложенного алгоритма в практических приложениях.

Ключевые слова: электромагнитное частотное зондирование, минимизация выпуклых функций,
сходимость, аппроксимация, метод наименьших квадратов, итерационные алгоритмы, математическое
моделирование.

1. Introduction. In the recent paper [1] the authors have presented a new approach to inverse problems of
frequency sounding called the convexification. The essence of convexification is constructing the strictly convex
objective functions when applying the least squares method to the nonlinear coefficient inverse problems. It
has been demonstrated in [1] that the conventional residual objective functions may often be multiextremal.
Under such a condition, the gradient and Newton-like methods do not guarantee the convergence to a global
minimum. Therefore, the numerical methods of global optimization, such as simulated annealing or genetic
algorithms, are usually used to search for a global minimum. However, these methods are time-consuming even
for several unknowns, and their use for solving the coefficient inverse problems has not been rigorously justified.
The convexification approach can be considered as an alternative to the methods of global optimization. This
paper is a more complete version of [19]. Compared to the latter, Sections 1 and 6 have been extended. Also,
the complete proofs of Lemma 1 and Theorems 1 and 3 and Appendices A and B have been included.

In principle, the convexification approach is applicable to many inverse problems of frequency sounding
of inhomogeneous media. For brevity, in this paper we focus on the inverse problem of magnetotelluric (MT)
sounding of layered marine shallow water configurations (see Figure 1) and address rigorously the issue of
multiextremality. Also, we demonstrate that the convexification approach can be applied to constructing a stable
computational algorithm. The main advantage of the proposed algorithm is that it provides the convergence to
the “exact” solution independent of the starting approximation. This is mainly because of the strict convexity
of resulting objective functions.

Briefly, the convexification approach consists of the following stages. The original coefficient inverse problem
is identically transformed to a certain auxiliary overdetermined boundary value problem for the nonlinear
integro-differential equation that does not explicitly contain an unknown coefficient. The latter problem may also
be interpreted in terms of continuation of the transformed field from the surface in an inhomogeneous layer. In
the geophysics literature, such a procedure is referred to as the field prediction. The integro-differential operator
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Figure 1. A typical marine shallow water configuration

is approximated by a family of parametric operators, where the parameter is chosen to be an upper bound of
the frequency band. After that, the nonlinear weighted least squares method is applied to reduce the problem of
field prediction to a constrained minimization problem. Once the transformed field in the inhomogeneous layer
is found, the coefficient distribution is directly determined from this field. It should be emphasized that the use
of Carleman’s weight functions (CWF) is crucial for constructing the strictly convex objective functions. They
result from Carleman estimates for the operator d2/dz2 (see Lemma 2 in Section 4).

Our choice of the specific model problem is motivated by the following. The principle of MT sounding was
first formulated and investigated by Tikhonov [2, 3] and Cagniard [4] in the early fifties of the 20th century.
Since then, the 1-D model of MT sounding has been extensively tested against a variety of simulated and field
data for tectonic studies and geophysical exploration of mineral, oil and gas deposits (see, e.g., [5]). As a result,
the consistency of this model with realistic horizontally-stratified (layered) media was demonstrated. Over the
last two decades, the MT sounding methods have also been applied to marine induction studies in oceanography
(see, e.g., [6, 7]). Since the marine configurations consist of the highly conductive seawater and porous sediments,
the wave process is not practically established in such media. Therefore, the propagation of the electromagnetic
(EM) field at sufficiently low frequencies is similar to the diffusion of light in highly absorbing media. It has
been pointed out in the contemporary marine electromagnetics literature (see, e.g., [8]) that in shallow waters
the EM signals can be accurately detected in the 1 Hz to 10 KHz frequency band. This frequency band is of
particular interest to environmental science for underwater communication and navigation and detection and
identification of objects submerged in the seawater or buried in the near-seafloor sediments. Although these
applications require the use of controlled EM sources, such as electric or magnetic dipoles or line currents, it
can be shown that the EM frequency sounding models are similar to the MT model. Therefore, one can take
advantage of exploiting the more simple 1-D MT model in exemplifying the feasibility of convexification.

Since the eighties of the 20th century, the α-dependence of Tikhonov’s smoothing functional has been
extensively exploited in the Soviet (Russian) geophysics community (see, e.g., [11]) when applying various
gradient and Newton-like methods to inverse problems of MT (EM) frequency sounding. Specifically, starting
with sufficiently large value of α, the minimization problem for Tikhonov’s smoothing functional is solved by
either the gradient or Newton-like methods. The process is advancing in the direction of decrease of α until a
certain stopping criterion is attained. In [12] such a technique for choosing the regularization parameter was
formalized and referred to as the continuation method. In the contemporary mathematics literature (see, e.g., [9,
13]), this technique is referred to as outer-inner iterations (an outer iteration over α and an inner iteration with
a gradient or Newton-like method). In [13], the outer-inner iteration scheme has been justified for one specific
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case when the original nonlinear operator can be decomposed into (or approximated by) a sum of linear and
bilinear operators. However, the outer-inner iteration scheme requires many restarting procedures if there is no
a priori information available about a certain approximation to the “exact” solution located in its small vicinity.
The convexification approach can be considered as an alternative to the outer-inner iteration scheme in that it
does not require multiple restarting procedures.

The MT (EM) sounding observations are usually available in the limited frequency band [ω̃min, ω̃max] due
to both the physical and logistic reasons. In marine electromagnetics, the upper bound does not exceed a
few hundred Hz. In other words, the sounding data are always incomplete. Furthermore, the application of
the Tikhonov regularization scheme to a nonlinear inverse problem (see, e.g., [9, 10]) does not, in general,
eliminate the multiextremality of Tikhonov’s smoothing functional. Indeed, if the regularization parameter α is
sufficiently large, the stabilizing term in Tikhonov’s smoothing functional dominates over the residual one. Since
the stabilizing term is quadratic, Tikhonov’s functional may become even quasi-strictly convex. However, the
minimizer of this functional may be sufficiently far from the “exact” solution. Conversely, if the regularization
parameter is sufficiently small, the residual term dominates over the stabilizing one. So, the multiextremality
of Tikhonov’s smoothing functional may remain.

We address the issue of incompleteness of sounding data when constructing the sequential minimization
algorithm based on the convexification approach. We certainly realize that a priori information about the
problem has to be used when constructing the algorithm. In general, such information can be introduced in
many ways. For instance, if the sediment characterization problem is our primary goal, the information about
the conductivities of the air, seawater, basement, and the depth L of an inhomogeneous layer is usually available
from the direct measurements or geological/geophysical survey. Such information can be used to construct the
three layer support configuration containing the air, seawater and basement layers. It should be pointed out
that such a support configuration is not necessarily close in a certain sense to a real configuration. Indeed,
the conductivities and thicknesses of sediment layers may differ significantly (up to several times) from the
conductivity of the seawater and the depth of water column. Solving analytically the forward problem for the
support configuration, one can then simulate the data in a frequency band, which is broader than the actual
frequency band available in sounding observations. Extending the actual frequency band, we substantially reduce
the approximation errors when constructing the sequential minimization algorithm. It is proved in this paper
that the smaller the approximation error the closer the approximate solution to the “exact” solution of the
original inverse problem. Therefore, if a sufficiently broad frequency band is available in observations, there is
no need for data extension.

Implementing the convexification approach to EM frequency sounding of layered conductive media, we
exploit Theorem 5.1 from the paper [1]. However, we do not solve the corresponding minimization problem for
the strictly convex objective function Jλ,χ(q) on a set K(m) as indicated in [1]. Instead, we construct its finite-
dimensional analog as follows. We divide the interval [0, L] into a finite set of subintervals and approximate
the spatial dependence of the predicted field by a quadratic polynomial in each subinterval. The unknown
coefficients of these polynomials are the frequency-dependent functions. Such an approximation is crucial for
both the stability analysis and implementation of the algorithm. In the first subinterval, we use the given
Dirichlet and Neumann conditions at z = 0 in order to obtain the coefficients at lower-order terms of the
quadratic polynomial. Thus, only the leading coefficient of this polynomial is unknown. Applying the nonlinear
weighted least squares method with Carleman’s weight functions and taking into account the strict convexity and
differentiability of the resulting objective function, we then formulate an inequality-constrained minimization
problem with respect to this coefficient and solve it by the Generalized Reduced Gradient Method (GRGM) (see,
e.g., [15]) avoiding the use of penalty functions. To ensure an appropriate accuracy, the constraints are obtained
from the solution of the forward problem for the support configuration. The starting vector is directly computed
from sounding data available from observations when determining the minimizer for the first subinterval. Once
the leading coefficient is determined, the transformed field and its first derivative are computed at the right
endpoint of the first subinterval. Then, they are used in the second subinterval to determine the starting vector.
The algorithm is advancing into the inhomogeneous layer until the last subinterval is met.

The sequential minimization algorithm developed in this paper can be viewed as a new numerical technique
allowing the stable field continuation into an inhomogeneous lossy layer. In the applied literature, this problem
is referred to as the field prediction. The layer stripping approach has been recently developed to facilitate
this problem. In the case of frequency sounding of a lossless inhomogeneous layer, the layer stripping approach
has been rigorously justified (see, e.g., [16]) and some computational algorithms providing the stable solutions
have been constructed (see, e.g., [17, 18]). However, it is very difficult to extend both these approach and
algorithms to the case of a lossy inhomogeneous layer. The main reason is that the problem of determining
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the inverse Laplace transform connecting both cases is inherently unstable. Even being regularized, it does not
allow sufficiently accurate solutions due to incompleteness of sounding data. To our knowledge, there are no
layer stripping algorithms providing the stable solutions to the inverse problem of frequency sounding of lossy
layered media. Unlike the layer stripping algorithms, the sequential minimization algorithm proposed in this
paper is stable. The stabilization is due to Carleman’s weight functions that suppress the exponential increase
of error in the predicted field when advancing into an inhomogeneous layer.

The paper is arranged as follows. In Section 2, the 1-D forward and inverse models of MT shallow sounding
are formulated. In Section 3, we introduce the concept of sequential minimization. In Section 4, we prove the strict
convexity of objective functions resulted from applying the convexification approach. In Section 5, we present
the stability analysis. Section 6 describes in detail the computational algorithm of sequential minimization and
presents the numerical results. Finally, in Section 7, we make conclusions and discuss possible directions for the
further work.

2. Formulations of problems

2.1. A forward model. In MT sounding, the natural sources of the electromagnetic field are used. These
sources are mainly due to the solar activity in the ionosphere of the Earth and thunderstorms in its troposphere.
Because of remote sources, the EM field varies very slowly in the horizontal directions on the Earth’s surface
allowing to assume that the EM field in layered media depends on depth. Therefore, we model the distant
natural sources by a plane transversely-polarized wave normally incident on the surface. For brevity, we consider
only the TE-mode of MT sounding assuming that E = (Ex, 0, 0) and H = (0, Hy, Hz), where Ex(z, ω̃) =
E0 exp (iω̃t− kaz) is the x-component of the electric field normally incident on the surface z = 0, i =

√
−1, ω̃

is the angular frequency, and ka is the wavenumber in the air. The TM-mode can be considered by analogy.
Under these conditions, the Maxwell’s and linear material equations can be reduced in an inhomogeneous layer
[0, L] to the scalar equation with respect to the normalized electric field u(z, ω̃) = Ex(z, ω̃)/Ex(0, ω̃)

u′′(z, ω̃)− k2(z, ω̃)u(z, ω̃) = 0, 0 < z < L, (1)

where u′′ = ∂2u/∂z2, k2(z, ω̃) = ω̃2ε0εµ
(

1 + i tan δ(z, ω̃)
)

is the variable wavenumber, tan δ(z, ω̃) = σ(z)/ε0εω̃
is the loss tangent, and σ(z) is the conductivity distribution. Here, the quantities ε0 = 8.85 · 10−12 F/m, ε > 0,
and µ = 4π · 10−7 H/m are the absolute permittivity of vacuum, the relative permittivity, and the magnetic
permeability of a medium. The magnetic permeability is assumed to be constant for all layers. Since k(z, ω̃) =

ω̃(n(z, ω̃) + iκ(z, ω̃)) (where n(z, ω̃) =
√

ε0εµ
2 (

√
1 + tan2 δ + 1) is the index of refraction characterizing the

phase speed of an EM wave and κ(z, ω̃) =
√

ε0εµ
2 (

√
1 + tan2 δ − 1) is the attenuation coefficient characterizing

the speed of decay of an EM wave amplitude), in the highly conductive media (tan δ ≫ 1), such as marine
configurations, n ≈ κ =

√

µσ(z)/ω̃. This means that both the refraction and attenuation are mainly affected by
the conductivity and the displacement currents are negligibly small at low frequencies. Therefore, we shall neglect
the induction current density when considering conductive configurations. Such media cannot be considered in
practice as waveguides because of their strong attenuating effect. Quite the reverse, the propagation of the EM
field in such media is similar to the diffusion of light in absorbing media. In this paper, we restrict our attention
to the conductive configurations only.

To derive the boundary conditions for Eq. (1), we exploit the continuity of tangential components of both
the electric and magnetic fields at z = 0 and z = L. Since Hy = (−iω̃µ)−1∂Ex/∂z, we have two continuity
conditions with respect to both Ex and ∂Ex/∂z at each interface. The surface admittance Y (ω̃) is defined by

Y (ω̃) =
Hy(0, ω̃)

Ex(0, ω̃)
= − 1

iω̃µ

E
′

x(0, ω̃)

Ex(0, ω̃)
= − 1

iω̃µ
u

′

(0, ω̃). (2)

The depth L is assumed to be known, and the half-space z > L is filled with a homogeneous poorly conductive
medium, which we refer to as a basement whose conductivity σb is known. Satisfying the continuity conditions
at both the interfaces z = 0 and z = L, we obtain both the Dirichlet u(0, ω̃) = 1 and Robin u′(0, ω̃) +
iω̃µY (ω̃)u(0, ω̃) = 0 conditions at z = 0 and the Robin condition u′(L, ω̃) + kbu(L, ω̃) = 0 at z = L. Here,

u′ = ∂u/∂z and kb(ω̃) =
√
2
2 (i + 1)

√
ω̃µσb. Note that since the transmission field in the half-space z > L is

proportional to exp (−kbz), the radiation condition as z → ∞ is satisfied. Adding the radiation condition as
z → −∞, we arrive to the forward model that consists of two boundary value problems. The first problem

u′′(z, ω̃)− k2a(ω̃)u(z, ω̃) = 0, z < 0, (3)

u′(0, ω̃) + iω̃µY (ω̃)u(0, ω̃) = 0, (4)

lim
z→−∞

(

u(z, ω̃)− exp (−kaz)
)

= 0 (5)
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governs the propagation of the EM field in the homogeneous half-space (the air) z < 0 with ka = ω̃
√
εaε0µ.

The second boundary value problem

u′′(z, ω̃)− iµω̃σ(z)u(z, ω̃) = 0, 0 < z < L, (6)

u(0, ω̃) = 1, (7)

u′(L, ω̃) + kb(ω̃)u(L, ω̃) = 0 (8)

governs the propagation of the EM field in the inhomogeneous layer 0 < z < L containing the seawater
and sediments. Since the admittance Y (ω̃) can be determined from the electric and magnetic components of
the electromagnetic field measured on the surface as indicated in (2), the boundary values problems (3) – (5)
and (6) – (8) can be considered separately. Since the subject of our investigation is the inhomogeneous layer, we
focus on the second problem.

Lemma 1. For any bounded piecewise-continuous function σ(z) > const > 0 and for any ω̃ ∈ [ω̃min,∞)
the boundary value problem (6) – (8) has a unique solution u ∈ H2(0, L) and u(z, ω̃) 6= 0 for all (z, ω̃) ∈
[0, L]× [ω̃min,∞).

The proof of this lemma is indicated in Appendix A.
For computational reasons, we introduce the dimensionless variables ξ = z/L and ω = ω̃/ω̃min. Then,

problem (6) – (8) can be rewritten in dimensionless form as follows:

u′′(ξ, ω)− k̂2(ξ, ω)u(ξ, ω) = 0, 0 < ξ < 1, (9)

u(0, ω) = 1, (10)

u(1, ω) + k̂b(ω)u(1, ω) = 0, (11)

where k̂2(ξ, ω) = iL2ω̃minωµσ(ξ) and k̂b(ω) =
√
2
2 (i+ 1)L

√
ω̃minωµσb.

2.2. An inverse model. In practice, the horizontal components Ex and Hy of the electromagnetic field
are measured on the surface ξ = 0. The admittance Y (ω) and, hence, the vertical gradient u′(0, ω) = −iωµY (ω)
can also be determined from (2). The inverse problem of 1-D MT frequency sounding can then be formulated
as follows.

Inverse Problem I. Given the function u′(0, ω) = ϕ(ω), ω ∈ [1,∞), the normalized electric field satisfies
the equations (9) – (11). Find the conductivity profile σ(ξ), ξ ∈ (0, 1).

In practice, the frequency dependence of both components of the electromagnetic field are always measured
in the limited frequency band [1, ωmax]. Under these conditions, the formulation given by Inverse Problem I is
not consistent with the reality. Therefore, we formulate the following problem.

Inverse Problem II. Given the function u′(0, ω) = ϕ(ω), ω ∈ [1, ωmax], the normalized electric field
satisfies the equations (9) – (11). Find a certain approximation σ̃(ξ) of the conductivity profile σ(ξ).

We shall make this formulation more specific in Section 3.2. It should also be pointed out that this
formulation follows directly from Tikhonov’s model of 1-D MT sounding [2, 3]. It was showed in [20] that
Tikhonov’s model can be reduced to the Sturm–Liouville equation via the Laplace-like transform. This gives
rise to an alternative approach to the 1-D MT problem based on the Gelfand–Levitan equation (see the overview
in [21]). Some algorithms for the inverse Sturm–Liouville problem and their numerical implementations can be
found in [22, 23]. It should, however, be noted that in the case of incomplete sounding data, the accuracy of the
reconstructed potential may severely be affected by the inverse Laplace-like transform. In the convexification
approach, we use Tikhonov’s model of MT sounding.

3. The general scheme of sequential minimization. In the paper [1], it was shown that Inverse Problem
II can be reduced to the problem of minimization of the strictly convex functional Jλ,χ(p) on the compact set
K(M). In this paper, our primary goal is to construct a stable computational algorithm for solving this problem.
To achieve this goal, we introduce the concept of sequential minimization. Specifically, instead of minimizing
the functional Jλ,χ(p) on the compact set K(M), we formulate a finite sequence of more simple minimization
problems and solve them recursively starting from the surface ξ = 0 and advancing in the inhomogeneous layer.
We apply this concept to the 1-D inverse problem of frequency sounding in the four stages: (1) transformations
of the original inverse problem to an auxiliary boundary value problem for an integro-differential equation;
(2) approximation of the integro-differential operator; (3) the sequential minimization; (4) inversion of sounding
data.

3.1. Transformations In just the same way as we did before (see [1], Section 4), we introduce the function
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w(ξ, ω) = ln [u(ξ, ω)]/ω and transform the problem (9) – (11) to the following problem:

w′′ + ω(w′)2 = iµL2ω̃minσ(ξ), 0 < ξ < 1, (12)

w(0, ω) = 0, (13)

w′(0, ω) = ϕ(ω)/ω, (14)

w′(1, ω) = −k̂b/ω, (15)

where ϕ(ω) = u′(0, ω). Next, introducing the function

p(ξ, ω) =
∂

∂ω

[

w(ξ, ω)− ξ
ϕ(ω)

ω

]

(16)

and using the definition of antiderivative, i.e., w(ξ, ω)− ξ ϕ(ω)
ω = −

∫∞
ω
p(ξ, ν) dν, we obtain the boundary value

problem for the integro-differential equation:

p′′ − 2ωp′
∫ ∞

ω

p′(ξ, ν)dν +

(
∫ ∞

ω

p′(ξ, ν) dν

)2

−2
dϕ(ω)

dω

∫ ∞

ω

p′(ξ, ν) dν + 2ϕ(ω)p′ − F (ω) = 0, 0 < ξ < 1, (17)

p(0, ω) = 0, p′(0, ω) = 0, (18)

p′(1, ω) = Ψ(ω), (19)

where

F (ω) =
ϕ(ω)

ω

[

ϕ(ω)

ω
− 2

dϕ(ω)

dω

]

, (20)

Ψ(ω) =
1

ω

[

k̂b(ω) + ϕ(ω)

ω
− dk̂b(ω)

dω
− dϕ(ω)

dω

]

. (21)

We note that the convergence of the integral term in (17) was proven in [1] for the 3-D case. A similar result for the
1-D case is presented in Appendix B. Thus, Inverse Problem II is reduced to the overdetermined problem (17) –
(21) with respect to the function p(ξ, ω). One can notice that the latter problem does not contain explicitly
the coefficient σ(ξ). Instead, it includes the functions F (ω) and Ψ(ω) that are determined via the sounding
data ϕ(ω). Since these formal transformations simply scale the normalized field u(ξ, ω), we observe that the
coefficient inverse problem is reduced to the problem of continuation of the scaled electric field from the surface
ξ = 0 into the inhomogeneous layer. In the applied literature (see, e.g., [8]), such a problem is referred as to the
field prediction. Once the field prediction problem is solved, the first and second spatial derivatives of w(ξ, ω)
are computed from the predicted field and, hence, the conductivity distribution is determined from Eq. (12).

3.2. Approximations. We first approximate the operator generated by the auxiliary problem (17) – (21)
as follows. Representing the integral of p′ as

∫ ∞

ω

p′(ξ, ν) dν =

∫ Ω

ω

p′(ξ, ν) dν +

∫ ∞

Ω

p′(ξ, ν) dν, (22)

we rewrite the problem (17) – (19) in the form

LΩ(p)− F (ω) = Fr(ξ, ω; Ω), 0 < ξ < 1, (23)

p(0, ω) = 0, p′(0, ω) = 0, (24)

p′(1, ω) = Ψ(ω), (25)

where

LΩ(p) ≡ p′′ − 2ωp′ ·
∫ Ω

ω

p′(ξ, ν) dν +

(
∫ Ω

ω

p′(ξ, ν) dν

)2

− 2
dϕ(ω)

dω
·
∫ Ω

ω

p′(ξ, ν) dν + 2ϕ(ω)p′ (26)

and

Fr(ξ, ω; Ω) =

∫ ∞

Ω

p′(ξ, ν) dν ·
[

2ωp′ + 2
dϕ(ω)

dω
− 2

∫ Ω

ω

p′(ξ, ν) dν −
∫ ∞

Ω

p′(ξ, ν) dν

]

. (27)
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Let (a, b) ⊆ (0, 1) be an arbitrary interval and s > 0 be an integer number. We define the space

Cs
Ω[a, b] =

{

f(ξ, ω) : f ∈ C([a, b]× [1,Ω]), ‖f‖Cs

Ω
[a,b] = max

j∈[0,s]
max
(ξ,ω)

∣

∣

∣

∣

∂j

∂ξj
f(ξ, ω)

∣

∣

∣

∣

<∞
}

.

Since the frequency Ω is chosen so that the magnitude of the second term in the right-hand side of (22) is
sufficiently small, it is meaningful to assume that there exists a sufficiently small number ε̃ > 0 such that

‖Fr‖CΩ[0,1] < ε̃. (28)

Therefore, we approximate the problem (17) – (19) by neglecting the term Fr(ξ, ω; Ω). The approximating
boundary value problems have the form

LΩ(p)− F (ω) = 0, 0 < ξ < 1, ω ∈ [1,Ω], (29)

p(0, ω) = 0, p′(0, ω) = 0, (30)

p′(1, ω) = Ψ(ω), (31)

It should be emphasized that the smallness of the integral
∫∞
Ω
p′(ξ, ν) dν requires the proper choice of the

“cutting” frequency Ω. It would certainly be desirable to take Ω = ωmax. However, this is possible only if a
sufficiently large upper bound ωmax of the frequency band is available in MT (EM) sounding. Otherwise, the
sounding data need to be extended to the interval (ωmax,Ω] prior to applying the sequential minimization
algorithm. Such an extension provides an appropriately small approximation error and, hence, a small error in
the recovered conductivity. If this is the case, we face with the problem of analytic continuation. Indeed, let
the domain of the analytic function ϕ(ω) be [1,∞). However, this function is determined only on the interval
[1, ωmax]. We wish to find the function ϕ(ω) in (ωmax,Ω], Ω > ωmax. It is well known that the problem of
analytic continuation is, in general, unstable. Although the continuous dependence of the recovered conductivity
distribution on perturbations of data is proven in Section 5, we should take special care when constructing
a regularized analytic continuation. The main criterion is to minimize the error of analytic continuation as
much as possible. This can be done in several ways. Although a detailed discussion of this problem is out of
the scope of this paper, we indicate in Section 6 a specific procedure for extending the sounding data when
dealing with marine configurations. This procedure exploits the support configuration allowing for reducing the
approximation error.

Let u∗ be the solution of the forward problem (9) – (11) corresponding to an “exact” conductivity profile σ∗

such that ϕ∗(ω) = u∗′(0, ω). Since all transformations indicated in Section 3.1 are identical, the function

p∗(ξ, ω) =
∂

∂ω

[

lnu∗ − ξϕ∗

ω

]

satisfies the conditions (23) – (25). We formulate the problem of finding a certain approximation of the function p∗

as follows.
Given ε̃ and approximate data ϕ̃ such that ϕ̃ = ϕ∗ + ∆ϕ, ω ∈ [1,Ω], ‖∆ϕ‖C1[1,Ω] 6 δ, δ > 0 (where

δ > 0 and ε̃ are sufficiently small constants), find a certain function p̃(ξ, ω) close to the function p∗(ξ, ω),
{

(ξ, ω) : (ξ, ω) ∈ [0, 1]× [1,Ω]
}

.
To solve this problem numerically, we construct a least squares solution to the overdetermined problem (29) –

(31) as follows. For each fixed ω ∈ [1,Ω], we first divide the interval [0, 1] into (n− 1) subintervals

0 = ξ0 < ξ1 < ξ2 < . . . < ξn−2 < ξn−1 = 1.

For brevity, we consider below only a uniform grid. Then we approximate the function p(ξ, ω) in each subinterval
[ξi−1, ξi] (i = 1, 2, . . . , n− 1) by a quadratic polynomial. The step size h = 1/(n− 1) is chosen to be sufficiently
small in order to ensure a small error of approximation of the function p(ξ, ω) by a second degree polynomial.
Because of zero Dirichlet and Neumann conditions at ξ = 0, we construct the approximation

p(ξ, ω) ≈ p1(ξ, ω) =
1

2
a1(ω)ξ

2, ξ ∈ (0, ξ1]. (32)

Assuming that the function pi−1(ξ, ω) is known, we derive the recurrence formulas for approximations of p(ξ, ω)
on the subintervals (ξi−1, ξi] (i = 2, 3, . . . , n− 2):

p(ξ, ω) ≈ pi(ξ, ω) =
1

2
ai(ω)(ξ − ξi−1)

2 + p′i−1(ξi−1, ω)(ξ − ξi−1) + pi−1(ξi−1, ω), ξ ∈ (ξi−1, ξi]. (33)
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Taking into account the Neumann condition at ξ = 1, we obtain the following approximation on (ξn−2, ξn−1]:

p(ξ, ω)≈ pn−1(ξ, ω) =
1

2
an−1(ω)(ξ − ξn−2) ·

[

(ξ − ξn−2)−
2

n

]

+Ψ(ω)(ξ − ξn−2) + pn−2(ξn−2, ω), ξ ∈ (ξn−2, ξn−1]. (34)

Thus, the function p(ξ, ω) is approximately determined by the (n−1) unknown coefficients ai (i = 1, 2, . . . , n−1).
This allows us to reduce the nonlinear least squares problem (5.9) from [1] to a sequence of more simple
minimization problems with respect to each ai.

3.3. Sequential minimization

3.3.1. Constructing the objective functions. Let M > 0 be a certain constant. In the space C2
Ω[0, 1]

we consider a convex compact set

G(M) =
{

g(ξ, ω) : g ∈ C3
Ω[0, 1] : ‖g‖C3

Ω
[0,1] 6M, M > 0

}

.

In the space C[1,Ω] we also consider a convex bounded set

G̃(M) =
{

q(ω) : q ∈ C[1,Ω] : ‖q‖C[1,Ω] 6M
}

.

By analogy with [1], we consider Carleman’s weight functions (CWFs)

Cλ,i(ξ) = exp

[

−λ
2
(ξ − ξi−1)

]

, ξ ∈ [ξi−1, ξi), (35)

where λ > 0 is a sufficiently large parameter, and a sequence of functionals

Jλ,i(ai) =

∫ Ω

1

∫ ξi

ξi−1

∣

∣L̂Ω(ai)− F (ω)
∣

∣

2
C2

λ,i(ξ) dξ dω, (36)

where L̂Ω(ai) is the value of the integro-differential operator LΩ(p) on the subintervals [ξi−1, ξi] at the function
p(ξ, ω) defined by (33) and (34).

Since both the functions p(ξi−1, ω) and p′(ξi−1, ω) are known from the preceding iteration, the only function
ai(ω) is unknown on [ξi−1, ξi].

3.3.2. The procedure of sequential minimization. Consider the finite sequence of constrained minimi-
zation problems

argmin
{

Jλ,i(ai) : ai(ω) ∈ G̃(M), (i = 1, 2, ..., n− 1)
}

, (37)

where

Jλ,i(ai) =

∫ Ω

1

∫ ξi

ξi−1

∣

∣L̂Ω(ai)− F (ω)
∣

∣

2
C2

λ,i(ξ) dξ dω. (38)

These problems (37) can only be recursively solved. Introducing the functions ρi(ξ), ηi(ξ, ω)

ρi(ξ) =











ξ, ξ ∈ [ξ0, ξ1],

ξ − ξi−1, ξ ∈ (ξi−1, ξi] (i = 2, . . . , n− 2),

(ξ − ξn−2)− 1/n, ξ ∈ (ξn−2, ξn−1],

(39)

ηi(ξ, ω) =











0, ξ ∈ [ξ0, ξ1],

p′i−1(ξi−1, ω), ξ ∈ (ξi−1, ξi] (i = 2, . . . , n− 2),

Ψ(ω), ξ ∈ (ξn−2, ξn−1],

(40)

we obtain

L̂Ω(ai) = ai − 2ω(aiρ
2
i + ηi)

∫ Ω

ω

ai(ν) dν − 2ω(aiρ
2
i + ηi)

∫ Ω

ω

ηi(ξ, ν) dν

+ ρ2i

(
∫ Ω

ω

ai(ν) dν

)2

+

(
∫ Ω

ω

ηi(ξ, ν) dν

)2

+ 2ρi

∫ Ω

ω

ai(ν) dν

∫ Ω

ω

ηi(ξ, ν) dν

− 2
dϕ

dω
ρi

∫ Ω

ω

ai(ν) dν − 2
dϕ

dω

∫ Ω

ω

ηi(ξ, ν) dν + 2ϕρiai + 2ϕηi. (41)
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Since the functions ηi(ξ, ω) are recursively computed, the operators L̂Ω(ai) and functionals Jλi(ai) are
also recursively found. This feature motivates the term “the sequential minimization”. Specifically, we first solve
numerically the constrained minimization problem (37) for i = 1 computing the approximate minimizer ã1. We
then use the expression (32) to calculate the approximations of p1(ξ1, ω) and p′1(ξ1, ω) and, hence, to compute
L̂Ω(a2), Jλ,i(a2) and the minimizer ã2, etc. until the last minimizer ãn−1 becomes computed. Note that the
expressions (33) and (34) are used to calculate the approximations of p′i(ξi, ω) for i = 2, . . . , n − 1. For the
existence and uniqueness of minimizers ãi, see Lemma 5.

3.4. Inversion. Once the minimizers ãi(ω) are found, the approximate first and second derivatives of the
predicted field p̃(ξ, ω) are determined as

p̃′(ξ, ω) =











ã1(ω)ξ, ξ ∈ [ξ0, ξ1],

ãi(ω)(ξ − ξi−1) + p̃′i−1, ξ ∈ (ξi−1, ξi] (i = 2, . . . , n− 2),

ãn−1(ω)
[

(ξ − ξn−2)− 1/n
]

+Ψ(ω), ξ ∈ (ξn−2, ξn−1],

(42)

p̃′′(ξ, ω) =

{

ã1(ω), ξ ∈ [ξ0, ξ1],

ãi(ω), ξ ∈ (ξi−1, ξi] (i = 2, . . . , n− 1).
(43)

These approximate derivatives can be used to determine the approximate conductivity. Indeed, it has been
indicated in Section 3.1 that

w(ξ, ω) =−
∫ ∞

ω

p(ξ, ν) dν + ξ
ϕ(ω)

ω
= −

∫ Ω

ω

p(ξ, ν) dν −
∫ ∞

Ω

p(ξ, ν) dν + ξ
ϕ(ω)

ω

=−
∫ Ω

ω

p(ξ, ν) dν + w(ξ,Ω) + ξ
ϕ(ω)

ω
.

If the frequency Ω is sufficiently large, the functions w(ξ,Ω), w′(ξ,Ω), and w′′(ξ,Ω) are small. Therefore, we
may approximate the functions w′ and w′′ by

w̃′(ξ, ω) = −
∫ Ω

ω

p̃′(ξ, ν) dν +
ϕ(ω)

ω
+ w′

s(ξ,Ω), (44)

w̃′′(ξ, ω) = −
∫ Ω

ω

p̃′′(ξ, ν) dν + w′′
s (ξ,Ω), (45)

where ws(ξ,Ω) is the w-field at the frequency Ω for the support configuration (see Section 6.1), which is known.
Since the right-hand side of Eq. (12) does not depend on ω, its left-hand side, i.e., the expression w′′ + ω(w′)2,
does not depend on ω as well. In principle, one can choose a certain fixed frequency ω ∈ [1,Ω) in (44) – (45)
when solving Eq. (12) with respect to σ(ξ). To reduce the approximation error, we however choose ω = 1. Then
we obtain the explicit formula for the solution of Inverse Problem II:

σ̃(ξ) =
1

µL2ω̃min

[

2αiℜ(Ii)ℑ(Ii) + ℜ(βi)ℑ(Ii) + ℜ(Ii)ℑ(βi) + ℑ(γi)
]

, (46)

where Ii = −
∫ Ω

1
ai(ν) dν, αi = ωρ2i (ξ), βi = 1 + 2ωτi(ξ)ρi(ξ), γi = ωτ2i (ξ), and

τi(ξ) =















ϕ(1), ξ ∈ [ξ0, ξ1],

ϕ(1) +
∫ Ω

1
p′i−1 dν, ξ ∈ (ξi−1, ξi] (i = 2, . . . , n− 2),

ϕ(1) +
∫ Ω

1
Ψdν, ξ ∈ (ξn−2, ξn−1].

(47)

4. Convexity analysis. Before establishing the strict convexity of functionals Jλ,i, we prove two lemmas.
We show first that the CFWs (35) provide a Carleman-like estimate for the operator d2/dξ2.

Remark 4.1. Actually, we extend the conventional definition of a strictly convex functional in a finite-
dimensional space. The inequality (60) in Theorem 1 can be viewed as such an extended definition. In the finite-
dimensional case, it turns out to be the conventional definition of the strict convexity because of equivalence of
all norms under consideration.

Lemma 2. For any complex-valued function u ∈ H2(0, l), l = const > 0, such that u(0) = u′(0) = 0, and
for any number λ > 0 the following Carleman-like estimate holds:

∫ l

0

|u′′|2 exp (−2λx) dx > 2λ3(1 + l)−2

∫ l

0

|u|2 exp (−2λx) dx. (48)
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Remark 4.2. Unlike the conventional Carleman estimates for the n-dimensional Laplace operator (see,
e.g., [24, 25, 27]), the estimate (48) does not require a zero condition at the right endpoint z = l. On the other
hand, we do not use the term

λ

∫ l

0

|u′|2 exp (−2λx) dx

in the right-hand side of the inequality (48). This term can though be introduced under the assumptions that
u(l) = 0 and the parameter λ is sufficiently large.

Remark 4.3. By virtue of (48), the L2(0, l)-weighted norm of the second derivative u′′(x) dominates over
the same norm of the function u(x) for a sufficiently large λ. This fact is exploited to prove the results indicated
below.

Proof. Let u ∈ H2(0, l) be an arbitrary function satisfying the boundary conditions u(0) = u′(0) = 0. Since
u = ℜ(u) + iℑ(u), we carry out the proof for the real part ℜ(u) only. For convenience, we denote u = ℜ(u) and
v = u exp (−λx). In this case, it is sufficient to assume that u ∈ C2[0, l] taking into account that the set C2[0, l]
is dense in H2(0, l). Then we obtain

u′ = (v′ + λv) exp (λx), u′′ = (v′′ + 2λv′ + λ2v) exp (λx).

Hence,

(u′′)2(1 + x)−1 exp (−2λx) =
[

(v
′′

+ λv) + 2λv′
]2
(1 + x)−1

> 4λv′(v
′′

+ λ2v)(1 + x)−1

= 2
d

dx

[

(λ(v′)2 + λ3v2(1 + x)−1)
]

+ 2[λ(v′)2 + λ3v2](1 + x)−2 (49)

> 2λ3u2(1 + x)−2 exp (−2λx) + 2
d

dx

[

(λ(v′)2 + λ3v2(1 + x)−1)
]

.

Integrating (49) with respect to x from 0 to l and taking into account the boundary conditions u(0) = u′(0) = 0,
we obtain

∫ l

0

(u′′)2(1 + x)−1 exp (−2λx) dx > 2λ3
∫ l

0

u2(1 + x)−2 exp (−2λx) dx. (50)

Since (1 + l)−1 6 (1 + x)−1 6 1, the inequality (50) implies

∫ l

0

(u′′)2 exp (−2λx) dx >
2λ3

(1 + l)2

∫ l

0

u2 exp (−2λx) dx.

This concludes the proof of Lemma 2.
Below by C we denote different positive constants independent of M , Ω, λ, and h. We also denote p′i−1(ω) =

p′i−1(ξi−1, p
′′
i−1(ω) = p′′i−1(ξi−1ω), p

′
0 = 0, and

I0(λ, h) =
1− exp (−λh)

λ
=

∫ h

0

exp (−λx) dx, λ > 0. (51)

Lemma 3. Assume that the functions ϕ,
dϕ

dω
∈ G̃(M/2) and p′i−1(ω), p

′′
i−1(ω) ∈ G̃(M) (i = 1, . . . , n− 1).

Let Jλ,i(ai) be the functionals defined by (36). Then the functional Jλ,i(ai) can be represented in the form

Jλ,i(ai) = I0(λ, h)

[
∫ Ω

1

∣

∣ai(ω)− Fi(ω)
∣

∣

2
dω +

1

λ

∫ Ω

1

Hi(λ, ω) dω

]

∀ai ∈ G̃(M), ∀λ > 1, (52)

where

Fi(ω) = F (ω) +

∫ Ω

1

p′i−1(τ) dτ ·
[

2ωp′i−1(ω)−
∫ Ω

1

p′i−1(τ) dτ + 2
dϕ(ω)

dω

]

− 2ϕp′i−1, (53)

and the real-valued function Hi satisfies the inequality

‖Hi(λ, ω)‖C[1,Ω] 6 C(ΩM)4 ∀λ > 1, ∀ai ∈ G̃(M). (54)
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Remark 4.4. It is proven in Theorem 2 (see Section 5) that the functions p′i−1(ω), p
′′
i−1(ω) ∈ G̃(M).

Proof. Let 1 6 i 6 n− 2. Taking into account (32) and (33), we represent the residual L̂Ω(ai) − F in the
form

L̂Ω(ai)− F = (ai − Fi)(ω) + (ξ − ξi−1)F̂i(ai, ξ − ξi−1, ω), (55)

where the function F̂i is

F̂i(ai, ξ − ξi−1, ω) =

∫ Ω

1

ai(τ) dτ ·
[

−2ω(ξ − ξi−1)ai − 2ωp′i−1 + (ξ − ξi−1)

∫ Ω

1

ai(τ) dτ − 2
dϕ

dω

]

+ 2ϕai.(56)

It follows from (56) that
‖F̂i‖C1

Ω
[ξi−1ξi] 6 C(ΩM)2 ∀ai ∈ G̃(M). (57)

Introduce the moments Ik of CWFs by

Ik(λ, h) =

∫ h

0

ξk exp (−λξ) dξ (k = 1, 2). (58)

Since Ik = (−1)kdkI0/dλ
k, it follows from (51) that

Ik(λ, h)

I0(λ, h)
6 C/λk (k = 1, 2) ∀λ > 1, ∀h > 0. (59)

Then (55) – (59) imply (52) – (54). The case i = n− 1 can be considered by analogy.
Thus, Lemma 3 is proved.
Theorem 1. Let all the conditions of Lemma 3 be satisfied and the functions Fi ∈ G̃(34M) (i = 1, . . . , n−1).

Then there exists a sufficiently large λ0 > C(ΩM)4 such that for all λ > λ0 every functional Jλ,i(ai) is strictly

convex on the set G̃(M), i.e., ∀a, b ∈ G̃(M) the following inequality holds:

Jλ,i(b)− Jλ,i(a)− J ′
λ,i(a)(b − a) > I0(λ, h)ρ‖a− b‖2L2(1,Ω). (60)

Here ρ ∈ (1/2, 1) is the parameter of strict convexity independent of M , Ω, λ, and h and J ′
λ,i is the Frechét

derivative of Jλ,i.

Proof. Let 1 6 i 6 n−2. Let a(ω) and b(ω) be two arbitrary functions belonging to the set G̃(M), c = b−a,
and

qi(ξ, ω) =
1

2
b(ω)(ξ − ξi−1)

2 + p′i−1(ω)(ξ − ξi−1) + pi−1(ω).

It follows from (55) and (56) that

|L̂Ω(qi)− F |2 = |a+ c− Fi|2 + 2(ξ − ξi−1) · ℜ
[

(a+ c− Fi) · F̂ i(a+ c, ξ − ξi−1, ω)
]

+ (ξ − ξi−1)
2 ·

∣

∣F̂i(a+ c, ξ − ξi−1, ω)
∣

∣

2
, (61)

where F̂ i means the complex-conjugate quantity. Then we obtain from (56)

|L̂Ω(qi)− F |2 = |a− Fi|2 + 2ℜ
[

c(a− F i)
]

+ |c|2 + (ξ − ξi−1)S1(a, c, ξ − ξi−1, ω)

+ (ξ − ξi−1)S2(a, c, ξ − ξi−1, ω), (62)

where S1 and S2 are the linear and nonlinear operators acting on the vector c = (ℜ(c),ℑ(c)). Below we denote
by a, c, p′i−1, and ϕ the complex conjugate of a, c, p′i−1, and ϕ. The operators S1 and S2 have the forms

S1(a, c, ξ − ξi−1, ω) = 2ℜ
{

c · F̂ i(a, ξ − ξi−1, ω) + (a− Fi)×
{
∫ Ω

ω

c dτ

[

−2(ξ − ξi−1)ωa− 2ωp′i−1 + 2(ξ − ξi−1)

∫ Ω

ω

a dτ − 2
dϕ

dω

]

+ 2ϕc

}}

+2ℜ
{{

∫ Ω

ω

c dτ ·
[

−2(ξ − ξi−1)ωa− 2ωp′i−1 + 2(ξ − ξi−1)× (63)

∫ Ω

ω

a dτ − 2
dϕ

dω

]

+ 2ϕc

}

· F̂ i(a, ξ − ξi−1, ω)

}

,
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S2(a, c, ξ − ξi−1, ω) = 2ℜ
{

(a− Fi) ·
(
∫ Ω

ω

c dτ

)2

(ξ − ξi−1)

+c

{
∫ Ω

ω

c dτ ·
[

−2(ξ − ξi−1)ωa− 2ωp′i−1

+2(ξ − ξi−1)

∫ Ω

ω

a dτ − 2
dϕ

ω

]

+ 2ϕc+

(
∫ Ω

ω

c dτ

)2

(ξ − ξi−1)

}}

+2ℜ
{(

∫ Ω

ω

c dτ

)2

F̂ i(a, ξ − ξi−1, ω)(ξ − ξi−1)

}

(64)

+

∣

∣

∣

∣

∫ Ω

ω

c dτ ·
[

−2(ξ − ξi−1) · ωa− 2ωp′i−1 + 2(ξ − ξi−1)

∫ Ω

ω

a dτ − 2
dϕ

ω

]

+2ϕc+

(
∫ Ω

ω

c dτ

)2

(ξ − ξi−1)

∣

∣

∣

∣

2

.

From (57) and (64) we then obtain

∣

∣

∣

∣

∂j

∂ξj
S2

∣

∣

∣

∣

6 C(ΩM)4
∣

∣c(ω)
∣

∣

2 ∀a, b ∈ G̃(M), ∀c = b− a (j = 1, 2). (65)

It follows from (58), (59), and (61) – (65) that for all a, b ∈ G̃(M), c = b − a, and λ > 1 the following estimate
holds:

Jλ,i(b)− Jλ,i(a)− J ′
λ,i(a)(b − a) > I0(λ, h)

[

1 + λ−1S3(c, λ)
]

∫ Ω

1

|c|2 dτ, (66)

where the functional S3(c, λ) satisfies the inequality

∣

∣S3(c, λ)
∣

∣ 6 C(ΩM)4.

Choosing a value of λ such that C(ΩM)4λ−1 6 γ, γ ∈ (0, 1/2), we obtain from (66)

Jλ,i(b)− Jλ,i(a)− J ′
λ,i(a)(b− a) > I0(λ, h)

[

(1− γ)

∫ Ω

1

|a− b|2 dτ
]

. (67)

The case i = n− 1 can be considered by analogy.
Thus, Theorem 1 is proved.
5. Stability analysis. In Section 3.2, we have introduced the function p∗ corresponding to the “exact”

solution σ∗ of Inverse Problem I. However, the sequential minimization algorithm results in a certain function p̃
that generates the solution σ̃ to Inverse Problem II. It is clear that ε̃ → 0 as Ω → ∞. In practice, both the
parameters ε̃ and δ and the frequency Ω may vary in broad ranges. Under these conditions, the sequential
minimization algorithm requires the stability analysis. In other words, the continuous dependence of a certain
norm ‖p̃ − p∗‖ on δ, ε̃, and the step size h must be rigorously justified. In this section, we establish such a
dependence. We first prove three lemmas.

Lemma 4. For any complex-valued function s ∈ C[1,Ω], the Frechét derivative of the functional Jλ,i(ai)
(i = 1, 2, . . . , n− 2) is given by

J ′
λ,i(ai)(s) = I0(λ, h) · 2ℜ

[
∫ Ω

1

s(ω)(ai − Fi) dω

]

+ 2ℜ
{
∫ Ω

1

s(ω)
(

1 + 2ϕ(ω)
)

·
∫ ξi

ξi−1

(ξ − ξi−1)C
2
λ,i(ξ)

×
{
∫ Ω

ω

ai(τ) dτ

[

−2(ξ − ξi−1)ωai − 2ωp′i−1 + (ξ − ξi1)

∫ Ω

ω

ai(τ) dτ − 2
dϕ

dω

]

+ 2ϕai

}

dξ dω

}

+2ℜ
{
∫ Ω

1

s(ω)

∫ ξi

ξi−1

(ξ − ξi−1)C
2
λ,i(ξ) ·

∫ ω

1

dτ

{

(ai − F i)

[

−2(ξ − ξi−1)τai − 2τp′i−1

+2(ξ − ξi−1)

∫ Ω

τ

ai(ν) dν − 2
dϕ

dω

]}

dξ dω

}

+ 2ℜ
{
∫ Ω

1

s(ω)

∫ ξi

ξi−1

(ξ − ξi−1)C
2
λ,i(ξ)

×
∫ ω

1

dτ

{[

−2(ξ − ξi−1)τai − 2τp′i−1 + 2(ξ − ξi−1)

∫ Ω

τ

ai(ν) dν − 2
dϕ

dω

]

· F̂ (ai, ξ − ξi−1, τ)

}

dξ dω

}

,
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where F̂ is defined by (56) and a horizontal bar over variables means the complex conjugation.
Proof. The proof follows from (36), (62), and (63).
Remark 5.1. A similar formula for Jλ,(n−1)(an−1) can be obtained in the same way.

Lemma 5. Suppose the functions ϕ,
dϕ

dω
∈ G̃(M/2) and p′i−1, p

′′
i−1 ∈ G̃(M), Fi ∈ G̃(34M). Then there

exists a sufficiently large number λ0 > C(ΩM)4 such that the functional Jλ,i(ai) is strictly convex on the set

G̃(M) for all λ > λ0 and the minimization problem

argmin
{

Jλ,i(ai) : ai ∈ G̃(M)
}

(68)

is uniquely solvable, whereas the minimizer ãi is an interior point of G̃(M). This minimizer is a solution to an
operator equation ai = Aiai with a contraction operator Ai : G̃(M) → G̃(M).

Proof. Because of (60), it is sufficient to show that for a sufficiently large λ > λ0 > C(ΩM)4 the equation

J ′
λ,i(ai)(s) = 0 ∀s ∈ G̃(M) (69)

has a unique solution belonging to the interior of G̃(M). Let 1 6 i 6 n− 2. Lemma 3, (51), (58), and (59) imply
that for any complex-valued function s ∈ C[1,Ω] the following equality holds:

J ′
λ,i(ai)(s) = I0(λ, h) ·

[

2ℜ
∫ Ω

1

s(ω)(ai − F i) dω − 2ℜ
∫ Ω

1

s(ω) · λ−1Ti(ai, ω, λ) dω

]

, (70)

where
∥

∥Ti(ai, ω, λ)
∥

∥

C[1,Ω]
6 C(ΩM)2 ∀ai ∈ G̃(M), ∀λ > λ0. (71)

We obtain from (69) and (70) the equivalent equation

ai(ω) = Fi + λ−1T i(ai, ω, λ). (72)

Define the map Ai : C[1,Ω] → C[1,Ω] by

Ai(a) = Fi + λ−1T i(a, ω, λ). (73)

We can then rewrite Eq. (72) in the form
ai = Ai(ai). (74)

Choose λ0 > C(ΩM)4 such that the following inequality holds:

λ−1C(ΩM)2 < M/4. (75)

Since Fi ∈ G̃(34M), we obtain from (71) – (75)

‖Ai(ai)‖C[1,Ω] 6 ‖Fi‖C[1,Ω] +
M

4
<

3

4
M +

M

4
< M. (76)

This inequality implies that
Ai : G̃(M) → G̃(M). (77)

It follows from Lemma 4 and (70) that

‖Ai(a1)−Ai(a2)‖C[1,Ω] 6 λ−1
∥

∥Ti(a1, ω, λ)− Ti(a2, ω, λ)
∥

∥

C[1,Ω]

6 λ−1C(ΩM)2‖a1 − a2‖C[1,Ω] ∀a1, a2 ∈ G̃i(M). (78)

In addition to (75), choose a sufficiently large parameter λ0 such that for λ > λ0

λ−1C(ΩM)2 < 1/2. (79)

Then, equations (77) – (79) imply that the map Ai is contractive on the set G̃(M). The case i = n − 1 can be
considered by analogy.

This concludes the proof of Lemma 5.
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Taking into account (see Section 3.2) that the function ϕ∗(ω) corresponds to the “exact” conductivity
distribution σ∗(ξ), we shall call ϕ∗(ω) the “exact” sounding data. In addition we denote

F ∗(ω) =
ϕ∗(ω)

ω

[

ϕ∗(ω)

ω
− 2

dϕ∗(ω)

dω

]

, (80)

L∗
Ω(p

∗, ϕ∗) = p∗′′ − 2ωp∗′
∫ Ω

ω

p∗′dτ +

(
∫ Ω

ω

p∗′dτ

)2

− 2
dϕ∗(ω)

dω

∫ Ω

ω

p∗′dτ + 2ϕ∗p∗′, (81)

∆F = F − F ∗, ∆ϕ = ϕ− ϕ∗. (82)

By analogy with (53), we denote

F ∗
i (ω) = F ∗(ω) +

∫ Ω

1

p∗′i−1(τ) dτ ·
[

2ωp∗′i−1(ω)−
∫ Ω

1

p∗′i−1(τ) dτ + 2
dϕ∗(ω)

dω

]

− 2ϕ∗p∗′i−1. (83)

Then, we have F ∗
1 = F ∗. Furthermore, let us denote ε = |(ε̃, δ)|. Without loss of generality, assume that the

following inequalities are fulfilled:

‖∆F‖C[1,Ω] <
ε

4
, (84)

∥

∥L∗
Ω(p

∗, ϕ∗)− F ∗
∥

∥

C[1,Ω]
<
ε

4
, (85)

‖∆ϕ‖C1[1,Ω] <
ε

4
. (86)

Also, denote (p∗i−1)
(s)(ω) = (p∗i−1)

(s)(ξi−1, ω), s = 1, 2, 1 6 i 6 n.
Lemma 6. Let p∗ ∈ G(M/2) and the inequalities (84) – (86) hold. Then the following inequality holds:

‖F ∗
i ‖C[1,Ω] 6

M

2
+
ε

4
, i = 1, . . . , n− 1. (87)

Proof. Let 1 6 i 6 n− 2. We have from (81) and (83)

L∗
Ω

(

p∗(ξi−1, ω), ϕ
∗)− F ∗(ω) = (p∗i−1)

′′(ω)− F ∗
i (ω). (88)

The inequality (85) implies that ‖F ∗
i ‖C[1,Ω] 6 ε/4 + ‖(p∗)′′i−1‖C[1,Ω]. Since p∗ ∈ G(M/2), we obtain the

inequality (87) from (88). The case i = n− 1 can be considered by analogy.
Thus, Lemma 6 is proved.
Theorem 2. Let σ∗(ξ) > const > 0 be a bounded piecewise continuous function on [0, 1], p∗ ∈ G(M/2),

and the inequalities (84) – (86) hold. Let λ0 > C(ΩM)4 be a sufficiently large parameter such that for λ > λ0
the inequalities (75) and (79) hold and

λ−1C(ΩM)2 <
ε

2
. (89)

For such λ, let
{

p̃i(ξ, ω)
}i=n

i=1
be the sequence of functions corresponding to the coefficients ãi determined via

the procedure of sequential minimization, i.e., the functions p̃i(ξ, ω) are determined from Eqs (33) and (34).
Then there exist sufficiently small numbers ε0 = ε0(Ω,M) > 0, h0 = h0(Ω,M) > 0 such that for all ε ∈ (0, ε0),
h ∈ (0, h0) the functions

p̃′i−1(ξi−1, ω) p̃
′′
i−1(ξi−1, ω) ∈ G̃(M) (i = 1, . . . , n− 1), (90)

Fi ∈ G̃

(

3

4
M

)

(i = 1, . . . , n− 1) (91)

and the following estimates hold:

‖∆p(s)i ‖C[1,Ω] 6 K(ε+ h), s = 0, 1, 2, i = 1, . . . , n− 1, (92)

Here

∆p
(s)
i (ω) =

∂(s)

∂ξ(s)
[

p̃i(ξi−1, ω)− p∗(ξi−1, ω)
]

, (93)
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p̃0(ξ0, ω) = p̃′0(ξ0, ω) = 0, p̃′′0(ξ0, ω) = ã1(ω), and K = K(Ω,M) > 0 is a constant depending on Ω and M .
However, this constant does not depend on ε, λ, and h.

Remark 5.2. It follows from Lemma 5 and Theorem 2 that G̃(M) is a correctness set for the minimization
problems (37) – (38). This means that these problems are conditionally well-posed on G̃(M) according to the
concepts and definitions indicated in [24, 26, 27]. In other words, the specific forms of the objective functions
Jλ,i(ai) and the feasible region G̃(M) for unknowns ai(ω) allow us to regularize the originally ill-posed p-field
prediction problem.

Remark 5.3. Without loss of generality, we assume below that Ω > 1, M > 1.
Proof. In this proof we assume that ‖ · ‖ = ‖ · ‖C[1,Ω]. The mathematical induction is used to prove the

theorem. Let i = 1. Then we obtain from (32) p1 = a1(ω)
ξ2

2 , ξ ∈ (ξ0, ξ1]. Since F ∗
1 = F ∗, we have from (84)

and (85) ‖F1‖ < (M+ε)
2 < 3

4M , where F1 = F and ε < ε0 < M/2. This means that F1 ∈ G̃(3M/4). This
fact proves (91) for i = 1. It follows from Theorem 1 and Lemma 5 that the functional Jλ,1 is strictly convex

on G̃(M) and its unique minimizer ã1 belongs to the interior of G̃(M). On the other hand, due to (72), this
minimizer is the unique solution of the equation

ã1(ω) = F1 + λ−1T 1(ã1, ω, λ). (94)

Denote g∗ε (ξ, ω) = LΩ(p
∗, ϕ∗)− F ∗. From (85), then, we have

∥

∥g∗ε(ξ, ω)
∥

∥

CΩ[0,1]
<
ε

4
. (95)

From (88) we have (p∗0)
′′ = F ∗

1 + g∗ε(0, ω). Using Taylor’s formula, we obtain

p∗(ξ, ω) = a∗1(ω)
ξ2

2
+

1

2

∫ ξ

0

(ξ − ξ′)2p∗(3)(ξ′, ω) dξ′, ξ ∈ (ξ0, ξ1), (96)

where a∗1 = F ∗
1 + g∗ε (0, ω). Denoting ∆a1 = ã1 − a∗1 and ∆F1 = F1 − F ∗, from (94) we obtain

∆a1 = ∆F1 + λ−1T 1(ã1, ω, λ)− g∗ε (0, ω). (97)

It follows from (71), (84), (89), (95), and (97) that

‖∆a1‖ 6
ε

4
+
ε

2
+
ε

4
= ε. (98)

Using (96) and (98), we obtain

∆p′2 = (p′1 − p∗′)(ξ1, ω) = ∆a1 · h−
∫ h

0

(h− ξ′)p∗(3)(ξ′, ω) dξ′.

Since p∗ ∈ G(M/2), from (98) we then obtain

‖∆p′2‖ 6 εh+Mh2/4. (99)

Noticing that ∆p2 = ∆a1 · h2/2 + ∆p′2 · h, from (98) and (99) we get

‖∆p2‖ 6
3

2
εh2 +Mh3/4. (100)

The estimate (92) for i = 2 follows immediately from (93), (98), (99), and (100). For i = 1, it is obvious, since
∆p1 = ∆p′1 = 0, ∆p′′1 = ∆a1, and (98) holds.

Since p′1(ξ1, ω) = ∆p′2(ω) + p∗
′

(ξ1, ω) and p∗ ∈ G(M/2), then (99) implies

‖p′1‖ 6
M

2
+ εh+

M

4
h2. (101)

In addition, it follows from (98) that

‖a1‖ <
M

2
+ ε. (102)
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Assume that the following inequalities hold:

εh+
M

4
h2 <

M

2
∀(ε, h) ∈ (0, ε0)× (0, h0), (103)

ε <
M

2
∀ε ∈ (0, ε0) ⊂ (0, 1). (104)

Then, the inequalities (101) and (102) imply

p̃′1(ξ1, ω), p̃
′′
1(ξ1, ω) ∈ G̃(M). (105)

Since p̃′1(ξ0, ω) = 0, p̃′′0(ξ0, ω) = ã1(ω), then (105) establishes (90) for i = 1, 2. To prove (91) for i = 2, consider
the quantity ∆Fi = Fi − F ∗

i . By virtue of (53) and (83), we have

∆Fi =∆F1 +

∫ Ω

ω

∆p′i(τ) dτ ·
[

2ωp∗
′

i−1(ω)−
∫ Ω

ω

p∗
′

i−1(τ) dτ + 2
dϕ∗

dω

]

+

∫ Ω

ω

p̃′i−1(τ) dτ ·
[

2ω∆p′i −
∫ Ω

ω

∆p′i−1(τ) dτ + 2∆
dϕ

dω

]

− 2∆ϕ · p∗′

i−1 − 2ϕ∆pi. (106)

Assuming i = 2 in (106) and taking account of (84), (86), (99), and (105), we obtain

‖∆F2‖ 6
ε

4
(1 + 2ΩM +M) + ‖∆p′2‖ · (5Ω2M + 3M) 6 8Ω2M(ε+ εh+Mh2). (107)

Applying (87), we get

‖F2‖ 6
M

2
+
ε

4
+ 8Ω2M(ε+ εh+Mh2). (108)

Assume that in addition to (103) and (104), the following inequality holds:

ε

4
+ 8Ω2M(ε+ εh+Mh2) <

M

5
∀(ε, h) ∈ (0, ε0)× (0, h0). (109)

Then the inequality (108) implies ‖F2‖ < M/2 +M/5 < 3M/4, which establishes (91) for i = 2.
Let 2 6 k 6 n− 2. Assume that (90) hold for 1 6 j 6 k − 1 and (91), (92) hold for 1 6 j 6 k and s = 1, 2.

We shall establish (90) for j = k and (91), (92) for j = k + 1.
It follows from Lemma 4 that the unique minimizer ãk of the functional Jλ,k(ak) belongs to the interior of

G̃(M) and satisfies the equation
ãk(ω) = Fk(ω) + λ−1T k(ãk, ω, λ). (110)

Representing the function p∗(ξ, ω) via Taylor’s formula, we obtain

p∗(ξ, ω) = a∗k(ω)
(ξ − ξk−1)

2

2
+ p∗

′

(ξk−1, ω)(ξ − ξk−1) + p∗(ξk−1, ω) (111)

+
1

2

∫ ξ

ξk−1

(ξ − ξ′)2p∗(3)(ξ′, ω) dξ′, ξ ∈ (ξk−1, ξk).

Therefore, equations (81) and (83) imply

a∗k(ω) = p∗
′′

(ξk−1, ω) = g∗ε(ξk−1, ω) + F ∗
k (ω). (112)

Subtracting (112) from (110) and denoting ∆ak = ãk − a∗k, we come to the equality

∆ak = ∆Fk + λ−1T k(ãk, ω, λ)− g∗ε (ξk−1, ω). (113)

It follows from (71), (89), and (95) that

‖∆ak‖ 6 ‖∆Fk‖+
ε

2
+
ε

4
6 ‖∆Fk‖+

3

4
ε. (114)

From (84), (86), and (106) we obtain

‖∆Fk‖ 6 (2ΩM) · ε+ 9(Ω2M) · ‖∆p′k‖. (115)
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Hence, the inequality (114) implies

‖∆ak‖ 6 (3ΩM) · ε+ 9(Ω2M) · ‖∆p′k‖. (116)

It follows from (33) that p̃′k(ξk, ω) = ãk · h+ p̃′k−1(ξk−1, ω). Hence, the equations (93), (111) imply

∆p′k+1 = ∆ak · h+∆p′k −
∫ ξk

ξk−1

(ξk − ξ′)p∗(3)(ξ′, ω) dξ′,

‖∆p′k+1‖ 6 ‖∆ak‖ · h+ ‖∆p′k‖+
Mh2

4
.

Taking into account (116), we then obtain

‖∆p′k+1‖ 6 (3ΩM) · (εh+ h2) +
[

1 + 9(Ω2M)h
]

· ‖∆p′k‖. (117)

Under our assumptions, this inequality holds for all j such that 2 6 j 6 (k − 1). Hence, we obtain

‖∆p′k+1‖ 6 (3ΩM) · (εh+ h2) ·
k−1
∑

j=0

[

1 + 9(Ω2M)h
]j

+
[

1 + 9(Ω2M)h
]k−1 · ‖∆p′2‖. (118)

Noticing that the first term in the right-hand side of (118) is proportional to the sum of geometrical progression,
we come to the estimate

(3ΩM) · (εh+ h2) ·
k−1
∑

j=0

[

1 + 9(Ω2M)h
]j

6 (ε+ h)
[

1 + 9(Ω2M)h
]k
. (119)

Since h = 1/(n− 1) and k 6 (n− 2), we get

[

1 + 9(Ω2M)h
]k−1

< exp [9Ω2M ]. (120)

The inequalities (99), (119), and (120) imply that

‖∆p′k+1‖ 6 exp
[

9(Ω2M)
]

(2ε+ h+ εh+Mh2). (121)

Assume that
(M + 1/2)h2 < h ∀h ∈ (0, h0). (122)

Since ε < 1 (see (104)), it follows from (121) that

‖∆p′k+1‖ 6 3 exp
[

9(Ω2M)
]

(ε+ h). (123)

Since ∆p′′k+1 = ∆ak, then the inequalities (116) and (123) imply

‖∆p′′k+1‖6 (3ΩM) · ε+ 27(Ω2M) exp
[

9(Ω2M)
]

(ε+ h)

6 28(Ω2M) exp
[

9(Ω2M)
]

· (ε+ h). (124)

Finally, noticing that ∆pk+1 = ∆ak · h2/2 + ∆p′k · h+∆pk and

∆pk+1 =
h2

2

k
∑

j=1

∆aj + h

k
∑

j=1

∆p′j ,

from (123) and (124) we obtain

‖∆pk+1‖6 28(Ω2M) exp
[

9(Ω2M)
]

· (ε+ h) ·
(

(n− 1)h2

2
+ (n− 1)h

)

6 42(Ω2M) exp
[

9(Ω2M)
]

· (ε+ h). (125)

To prove (90) for j = k, we notice that

‖p̃(s)k ‖ 6 ‖p∗(s)k ‖+ ‖∆p(s)k+1‖ 6
M

2
+ ‖∆p(s)k+1‖. (126)
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Since p̃′′k = ãk(ω) ∈ G̃(M), then (90) holds true for p̃′′k(ξk, ω). Assume that the parameters ε0(Ω,M) and
h0(Ω,M) are chosen sufficiently small, so that in addition to (103), (104), (109), and (122), the following
inequality holds:

M

2
+ 42Ω2M exp

[

9Ω2M
]

· (ε+ h) <
3M

4
∀(ε, h) ∈ (0, ε0)× (0, h0). (127)

Then, it follows from (123) and (126) that p̃′k(ξk, ω) ∈ G̃(M), i.e., (90) is established for j = k.

Show that Fk+1 ∈ G̃(3M/4). It follows from (115), (123), and (127) that

‖Fk+1‖6
M

2
+ (2ΩM) · ε+ 27(Ω2M) exp [9Ω2M ] · (ε+ h)

6
M

2
+ 28(Ω2M) exp [9Ω2M ] · (ε+ h) <

3

4
M.

Hence, Fk+1 ∈ G̃(3M/4). Since (90) and (91) are established, the estimates (123) – (125) imply (92). For the
last subinterval [ξn−2, ξn−1], the proof can be carried out by analogy. However, the Neumann condition at ξ = 1
should be taken into account in that case.

Thus, Theorem 2 is proved.
Finally, Theorem 3 shows that the estimate (92) implies the analogous estimate for the solution σ̃(ξ) to

Inverse Problem II, where σ̃(ξ) is obtained from (44) – (47).
Theorem 3. Let all the conditions of Theorem 2 are satisfied and the following inequality holds:

sup
ξ∈[0,1]

[
∫ ∞

Ω

∣

∣p∗(s)(ξ, τ)
∣

∣ dτ +
∣

∣w(s)
s (ξ,Ω)

∣

∣

]

< α, s = 1, 2. (128)

Here α > 0 is a sufficiently small constant. Let ∆σi = σ̃(ξi−1)− σ∗(ξi−1). Then the following estimate holds:

max
06i6n

|∆σi| 6
1

µL2ω̃min
K1(ε+ h+ α). (129)

Here K1 = K1(Ω,M) > 0 is a constant depending only on Ω and M .
Proof. Recall that

w̃′(ξ, ω) = −
∫ Ω

ω

p̃′(ξ, ν) dν +
ϕ(ω)

ω
+ w′

s(ξ,Ω), (130)

w̃′′(ξ, ω) = −
∫ Ω

ω

p̃′′(ξ, ν) dν + w′′
s (ξ,Ω), (131)

w∗′

(ξ, ω) = −
∫ Ω

ω

p∗
′

(ξ, ν) dν +
ϕ∗(ω)

ω
−
∫ ∞

Ω

p∗
′

(ξ, ν) dν, (132)

w∗′′

(ξ, ω) = −
∫ Ω

ω

p∗
′′

(ξ, ν) dν −
∫ ∞

Ω

p∗
′′

(ξ, ν) dν. (133)

By analogy with (93), we denote

∆w
(s)
i =

∂(s)

∂ξ(s)
[

p̃i(ξi−1, 1)− p∗i (ξi−1, 1)
]

, s = 1, 2.

Then it follows from (46) that

µL2ω̃min|∆σi| 6 |∆w′′
i |+ |∆w′

i| ·
[

|w̃(ξi−1, 1)|+ |w∗(ξi−1, 1)|
]

. (134)

We estimate all terms in the right-hand side of this inequality. Subtracting (133) from (131) and taking into
account (92) and (128), we obtain

|∆w′′
i | 6 Ω ·K · (ε+ h) + α. (135)

Similarly, subtracting (132) from (130) and taking into account (86), we get

|∆w′
i| 6 Ω ·K · (ε+ h) + α+

ε

4
. (136)
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Since p∗ ∈ G(M/2) and p̃′(ξi−1, ω) ∈ G̃(M), then taking into account (86), (130), and (132), we come to the
inequality

∣

∣w̃′(ξi−1, 1)
∣

∣+
∣

∣w∗′

(ξi−1, 1)
∣

∣ 6 ΩM + 2M + α. (137)

The inequalities (134) – (137) imply (129).
This concludes the proof of Theorem 3.
6. Computational experiments. We have performed some computational experiments to demonstrate

the feasibility of the proposed algorithm.
6.1. Models. The models used in computational experiments consist of several layers with parallel interfaces

(see Figure 1). In all models, the upper layer (ξ < 0) contains the air, i.e., a perfect dielectric whose conductivity
is assumed to be zero. The inhomogeneous layer (0 < ξ < 1) contains the conductive seawater and several
sediment layers. The lower layer (ξ > 1) contains the homogeneous basement whose conductivity is two order
less than the averaged conductivity of the inhomogeneous layer.

In our computational experiments, we use two realistic marine configurations typical for the shallow water
Stockholm archipelago, the Baltic sea. Specifically, we adopt the four layer marine configuration

σ(z) =















0, S ·m−1 for z < 0
0.70, S ·m−1 for 0 6 z < 47 m
0.14, S ·m−1 for 47 m 6 z < 93 m
0.001, S ·m−1 for z > 93 m

(138)

and the five layer marine configuration

σ(z) =























0, S ·m−1 for z < 0
0.70, S ·m−1 for 0 6 z < 47 m
0.32, S ·m−1 for 47 m 6 z < 55 m
0.19, S ·m−1 for 55 m 6 z < 70 m
0.001, S ·m−1 for z > 70 m.

(139)

Also, we use the realistic parameters in order to construct two more synthetic marine configurations. The third
configuration contains a thin highly conductive layer laying on the sediment layer. This thin layer models a
mine.

σ(z) =























0, S ·m−1 for z < 0
0.70, S ·m−1 for 0 6 z < 46 m
10.0, S ·m−1 for 46 m 6 z < 47 m
0.14, S ·m−1 for 47 m 6 z < 93 m
0.001, S ·m−1 for z > 93 m.

(140)

The fourth configuration contains ten layers. It has been constructed to model the sediment conductivity
stratification due to porosity.

σ(z) =































































0, S ·m−1 for z < 0
0.70, S ·m−1 for 0 6 z < 47 m
0.32, S ·m−1 for 47 m 6 z < 55 m
0.19, S ·m−1 for 55 m 6 z < 60 m
0.14, S ·m−1 for 60 m 6 z < 70 m
0.20, S ·m−1 for 70 m 6 z < 75 m
0.40, S ·m−1 for 75 m 6 z < 80 m
0.25, S ·m−1 for 80 m 6 z < 87 m
0.14, S ·m−1 for 87 m 6 z < 93 m
0.001, S ·m−1 for z > 93 m.

(141)

The conductivity of seawater is 0.7 S ·m−1 for all four models.
6.2. Simulation of sounding data. To simulate the sounding data ϕ(ω), we solve numerically the

boundary value problem (9) – (11). Specifically, we reduce this problem to a system of first-order differential
equations. This can be accomplished by introducing the new variable

y = − 1√
ω

u′

u
.
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Then we obtain the Cauchy problem for the linear first-order equation

u′ +
√
ωyu = 0, 0 < ξ < 1, (142)

u(0, ω) = 1 (143)

and the Cauchy problem for the Riccati equation

y′ =
√
ω
(

y2 − iC2σ(ξ)
)

, 0 < ξ < 1, (144)

y(1, ω) = −C(i+ 1)
√

σb/2, (145)

where C = L
√
µω̃min. Setting y = yp + z, where yp is the particular solution of the Riccati equation, we obtain

the two Cauchy problems with respect to yp and z

y′p =
√
ω
(

y2p − iC2σ(ξ)
)

, 0 < ξ < 1, (146)

yp(1, ω) = −iC
√

σb/2 (147)

and the Cauchy problem for the Bernoulli equation

z′ =
√
ω(z2 + 2ypz), 0 < ξ < 1, (148)

z(1, ω) = −C
√

σb/2. (149)

Since both the linear (142) and Bernoulli (148) equations are integrated in closed form, the sounding data can
be represented as

ϕ(ω) = −
√
ω
[

yp(0, ω) + t−1(0, ω)
]

, (150)

where

t(0, ω) =
√
ω

∫ 1

0

exp
(

2
√
ωI1(yp, ζ)

)

dζ − C−1
√

2/σb exp
(

2
√
ωI2(yp, 0)

)

,

I1(yp, ζ) =
∫ ξ

0

yp(ζ, ω) dζ, I2(yp, ζ) =
∫ 1

ξ

yp(ζ, ω) dζ,

It can be seen from (150) that the function ϕ(ω) is actually determined by the particular solution yp to the
Riccati equation. We solve numerically the problem (146) – (147) using a fourth-order Runge–Kutta method.
Because of algorithmic and roundoff errors, the simulated data are always slightly perturbed. The relative level
of the total error has been estimated by testing the Riccati solver against the analytical solutions of the forward
problem for the three and four layer configurations. Based on the test results, we are confident that it does not
exceed 5 · 10−5. Figure 2 shows the comparison between the analytical and numerical solutions in terms of the
logarithmic apparent resistivity ρa = log10 [ωµ/|ϕ(ω)|2], which is usually used in practice to represent the data.
For the sake of visualization, here and below we display the dimensional frequency f̃ = ω̃/2π. Although such
slightly perturbed data are used in all computational experiments, in this paper we do not model the noisy
data. Instead, we focus on simulating the incomplete data and extending them to a broader frequency band.

6.3. Implementation of the sequential minimization procedure. Following the procedure of sequential
minimization (see Section 3.3.2), we first discretize the interval [1,Ω] by using a semi-uniform grid because
of the strong filtering effect of seawater. Specifically, we use a uniform grid with sufficiently small step when
discretizing the interval [1, 50] and another uniform grid with much larger step when discretizing its complement.

As a result, the discrete analogues of complex-valued functions w, w′, w′′, p, p′, p′′, ai, F , Ψ, k̂b defined
on the interval [1,Ω] for each fixed ξ generate the complex vectors belonging to Cm. For convenience, we
shall preserve the same notations for the corresponding vectors, so that the symbol ω denotes below a real
vector belonging to the Euclidean space Rm. In addition, we precompute the vectors F̂ = ϕ̂

ω [
ϕ̂
ω − 2ϕ̂′] and

Ψ̂ = 1
ω [

k̂b(ω)+ϕ̂(ω)
ω − k̂′b(ω) − ϕ̂′(ω)]. Here, the symbol ′ means a certain finite-difference approximation of the

first derivative of the function ϕ(ω). To compute ϕ̂′, we use Stechkin’s regularizator (see, e.g., [28]).
To solve numerically all the n − 1 minimization problems (37) indicated in Section 3.3.2, the set G̃(M)

needs to be specified. In general, the construction of constraints can be accomplished in several ways. If no
a priori information about the problem to be solved is available, we take the following nonlinear constraints for
each fixed i = 1, 2, . . . , n− 1:

0 6
∣

∣ai(ω)
∣

∣ 6 B. (151)
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Figure 2. The apparent resistivity for the four layer medium. The analytical solution (solid) in comparison
with the numerical solution (filled bullets) for the frequency band [1, 1000] Hz

Here ai = (ℜ(ai),ℑ(ai)) is the 2m-dimensional real vector and B > 0 is a certain constant. As a result of
finite-dimensional approximation, we obtain n− 1 sets Pi of constraints. The next stage consists of solving the
minimization problems

argmin
{

Jλ,i(ai) : |ai| ∈ Pi

}

. (152)

In the mathematics literature (see, e.g., [15]), there are available several numerical methods for solving
the constrained minimization problems. In our computational experiments, we use the Generalized Reduced
Gradient Method (GRGM) (see, e.g., [15, 29]) because of the nonlinear objective function and constraints. We
outline briefly the descent scheme of sequential minimization in algorithmic form

astart = F̂

FOR i=1, n-1 DO BEGIN

Compute a3i

FOR k=1, 2, . . . DO BEGIN

a
(k+1)
i = a

(k)
i − βksk

IF |∆kJλi| 6 STOP THEN GOTO JUMP

ENDFOR

JUMP:

ãi = a
(kstop)
i

Compute ρ̃(ãi), η̃i(ãi)

astart = ãi

ENDFOR,

where −sk is the direction of descent. The parameters βk are chosen so that the relaxation condition, i.e.,

Jλ,i(a
(k+1)
i ) < Jλ,i(a

(k)
i ), is fulfilled. We accept the kth iteration aki as an approximate minimizer if either

the variation |∆kJλ,i| between two consecutive iterations of the objective function is less than STOP or the
Kuhn–Tucker optimality conditions are approximately satisfied to STOP. In computational experiments, the
number STOP is set up 10−5. It should also be pointed out that being a descent method, the GRGM requires
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the starting vectors to be specified for each subinterval (ξi−1, ξi] (i = 1, . . . , n− 1). The following procedure is
adopted for choosing the starting vectors. It follows from (52) – (54) and (72) that the vector F̂1 depending on
the data ϕ̂ can be taken as a starting vector astart1 . Then, we take consecutively astarti = ãi−1 (i = 2, . . . , n− 1).
In the sequential minimization algorithm, the starting vectors are determined either from the data ϕ̂(ω) or from
the preceding approximate minimizers ãi (i = 1, . . . , n − 1). Thus, we eliminate the uncertainty in choosing a
starting vector inherent in the gradient and Newton-like methods.

The procedure results in the finite set of m-dimensional complex-valued vectors {ãi}n−1
i=1 . Given this set,

the first derivative of the predicted field p(ξ, ω) is computed from Eq. (42). Then, the approximate conductivity
profile σ̃(ξ) is directly computed from Eqs. (46) – (47). In computational experiments, all integrals are computed
using Gaussian quadrature formulas.

6.4. Numerical results We apply the sequential minimization algorithm to the simulated data indicated
in Section 6.2. In computational experiments, we use the CWFs (see Eq. (35)) with sufficiently large parameter
λ varying from 200 to 500. For such values of λ, the changes in the reconstructed conductivity distribution are
small. The CWFs provide sufficiently high values of the convexity parameter ρ and, hence, sufficiently high rate
of convergence of the GRGM. For the four-, five-, and ten-layer models, the interval [0, L] is discretized into
n− 1 = 31 subinterval, whereas it is discretized into n− 1 = 127 subintervals for two other models.

6.4.1. Inversion of incomplete data It has been mentioned in Section 3.2 that the “cutting” frequency
Ω does not necessarily coincide with the upper bound ωmax of the frequency band. Due to technological or
logistic reasons, the upper bound ωmax often is much less than the frequency Ω providing a sufficient accuracy
of the approximate model (29) – (31). Therefore, we first simulate the incomplete data in the frequency band
[1, 200] Hz and apply the sequential minimization algorithm for these incomplete data. Figure 3 shows the result
of inversion (asterisks) for B = 10−2.

Figure 3. Comparison the “exact” solution (solid) for the four-layer configuration with the conductivity profiles
recovered from the incomplete (asterisks) and extended (filled bullets) data

We observe that if no a priori information is available, the recovered conductivity profile differs significantly
from the “exact” profile. This is due to incomplete data and a relatively large approximation error. Under such
conditions, the high resolution of the so-called fine structure of σ(z) cannot be expected for any regularizing
algorithm including the proposed one. However, it is well known from the theory of ill-posed problems (see,
e.g., [14]) that the use of a priori information about the specific problem to be solved may improve the accuracy of
a regularized solution. Therefore, we focus further on exploiting such information in the sequential minimization
algorithm.

6.4.2. Using a priori information To improve the accuracy of reconstruction, we use a priori information
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about the problem. Specifically, we employ the concept of a support solution. This concept consists of the
following. Since the highly conductive seawater plays the role of a low-pass filter with respect to EM field
propagated through the water column, the gradients of ϕ(ω) corresponding to many realistic distributions of
conductivity differ slightly at sufficiently high frequencies, say at frequencies greater than ωmax. Moreover, the
conductivity of seawater σw can be estimated from the direct measurements. Therefore, one can introduce the
three-layer support model

σ(z) =







0 for z < 0,
σw for 0 6 z < L,
σb for z > L.

(153)

It should be emphasized that the proximity of this model to the models (138) – (141) is not required
when exploiting the sequential minimization algorithm. We can then find the analytical solution to the forward
problem (9) – (11) for the support model and use it for extending the sounding data ϕ(ω), ω ∈ [1, ωmax], on
the interval (ωmax,Ω]. Also, this allows us to decrease significantly the approximation error. As an example, we
describe below a simple heuristic procedure for such an extension.

Let ϕ3(ω) be the data obtained from this solution. From a priori information, the gradients of both the
functions ϕ(ω) and ϕ3(ω) are sufficiently close in the interval ω ∈ (ωmax,Ω]. This means that one can extend
the data ϕ(ω) on the interval (ωmax,Ω] by adding ϕ3(ω), ω ∈ (ωmax,Ω] and eliminating the jump at ω = ωmax.
Specifically, the extended data are defined as

ϕ̂(ω) =

{

ϕ(ω), [1, ωmax],

ϕ̂3(ω), (ωmax,Ω],
(154)

where

ϕ̂3(ω) =

{

ϕ3(ω) + ∆(ωmax) if ϕ(ωmax) > ϕ3(ωmax),

ϕ3(ω)−∆(ωmax) if ϕ(ωmax) < ϕ3(ωmax)
(155)

and ∆(ωmax) = ϕ(ωmax) − ϕ3(ωmax). Figure 4 shows the result of extending the data on the interval (200,
1000] Hz in terms of the logarithmic apparent resistivity for the four-layer model. After extending the data, the
level of the total relative error does not exceed 10−4 for all the four models indicated above.

Figure 4. The “exact” data (solid) for the four-layer model in comparison with the extended data (154), (155)
for the frequency band [200, 1000] Hz (filled bullets)

Given the three-layer support configuration, we compute consecutively the vectors u3, p3, a3i and derive m
nonlinear constraints (instead of (151)) for each fixed i = 1, 2, . . . , n − 1 for the minimization problems (152).
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These constraints are as follows:
0 6

∣

∣ai(ω)
∣

∣ 6 α
∣

∣a3i(ω)
∣

∣,

where α > 1 is a certain number. We have found that the minimizers of the corresponding minimization problems
were not significantly changed if α ∈ [2, 100]. In Figure 5, we plot these constraints for the first subinterval, i.e.,
i = 1 for the four-layer model.

Figure 5. The magnitude of the “exact” coefficient a1 (solid), constraint (dashed), and starting vector (filled
bullets)

The incomplete data simulated in the frequency band [1, 200] Hz have been extended to the band (200, 1000]
Hz using the corresponding three-layer support configurations. In addition, we use the constraints derived from
the support model. Figures 3 (bullets) and 6 demonstrate the performance of the sequential minimization
algorithm for the realistic shallow water sediment configurations. In Figure 3, we see that the accuracy of
the recovered conductivity profile can significantly be improved when using a priori information in the form
indicated above. In Figure 7, we plot the reconstructed profile for the synthetic ten-layer sediment configuration
in order to demonstrate the resolution power of the sequential minimization algorithm when using a priori
information. Finally, Figure 8 shows its performance when identifying the mine modelled as an infinite highly
conductive layer.

Thus, we have demonstrated that in the case of “noiseless” data, the use of a priori information is crucial for
providing the high accuracy of reconstruction. It should also be pointed out that the similar situation takes place
when applying the Newton-like methods to 1-D MT (EM) frequency sounding “noiseless” data and using a priori
information about the interface positions. As an example, we refer to the paper [30] in which the performance
of the Levenberg–Marquardt and regularized Newton–Kantorovich methods was numerically studied for the
same marine configurations. The results of reconstruction are similar to the results indicated in Figures 3 (filled
bullets) and 6 only if the “good” starting vectors were chosen. We also refer to the paper [17] (see Figures 1
and 5 c) demonstrating similar results.

To model the noisy data, we use the simple stochastic model

ϕ̃ = ϕ+ σξ, (156)

where σ > 0 is the standard deviation and ξ is the normally distributed pseudo-random vector with a mean of
zero and a standard deviation of one. In the computational experiments, we use one hundred samples of the
stochastic vector ϕ̃. Figure 9 demonstrates the performance of the proposed algorithm in the case of noisy data.
The triangles and diamonds represent the mean values of the conductivity profile reconstructed from the noisy
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Fugure 6. The reconstructed conductivity profile (filled bullets) in comparison with the “exact” solution (solid)
for the five-layer configuration

Figure 7. The reconstructed conductivity profile (filled bullets) in comparison with the “exact” solution (solid)
for the ten-layer configuration

sounding data with the standard deviations 0.0292 and 0.0527. The corresponding levels of noise are five and
ten percent, respectively.

7. Conclusions. We have constructed the sequential minimization algorithm that implements the convexi-
fication approach to the 1-D inverse problems of electromagnetic frequency sounding. It can also be applied
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Figure 8. The reconstructed conductivity profile (filled bullets) in comparison with the “exact” solution (solid)
for the five-layer configuration containing the modeled mine layer

to solve the inverse problems for more general equation u′′ + [ω2α(ξ) + iωβ(ξ) + γ(ξ)]u = 0. Whereas the
gradient or Newton-like methods require a priori information about the “good” starting vector, the proposed
algorithm utilizes the available sounding data providing the convergence to the approximate solution on the
correctness set. A clear physical interpretation can be provided for the procedure of sequential minimization.
Indeed, transforming the original inverse problem to an auxiliary one, we reformulate it in terms of prediction
of the electromagnetic field from the surface into an inhomogeneous layer. Since the field prediction problem is,
in general, unstable, we construct the layer stripping-like procedure dividing the spatial domain of the unknown
conductivity distribution into a finite set of subintervals and approximating the spatial dependence of the field
in each subinterval by a quadratic polynomial with frequency-dependent coefficients. Using the Carleman weight
functions, we stabilize the field prediction when advancing into the inhomogeneous layer. Once the predicted
field is computed, the inversion of sounding data is explicitly performed.

In addition, we indicate here several prospective directions for research. First, to make the sequential
minimization algorithm applicable to the real data, we need to test its performance for noisy components of
electromagnetic field and improve the algorithm if required. Second, it is our intention to construct some iterative
algorithms exploiting the contraction property indicated in Lemma 5. Third, we plan to extend our approach
to some inverse problems of acoustic frequency sounding of absorbing media and infrared optical sensing of a
human body. We also plan to extend the sequential minimization algorithm to the 2-D and 3-D models making
possible a unified framework of the convexification approach applicable to a broad class of multidimensional
coefficient inverse problems.

Acknowledgments. We thank Dr. Krylstedt and Dr. Mattsson for supplying one of the authors (AT)
with particular marine configurations of the Stockholm archipelago used in computational experiments.

Appendix A

Proof of Lemma 1. Since (6) – (8) is a modification of the Sturm–Liouville problem, its uniqueness implies
the existence. Assume that this problem has two different solutions u1 and u2. Let v = u1 − u2; it satisfies the
boundary value problem

v′′(z, ω̃)− iµω̃σ(z)v(z, ω̃) = 0, 0 < z < L, (157)

v(0, ω̃) = 0, (158)

v′(L, ω̃) + kb(ω̃)v(L, ω̃) = 0. (159)
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Figure 9. The conductivity profile recovered from the noiseless data (filled bullets) in comparison with the
“exact” (solid) and mean values of approximate solutions (triangles and diamonds) for the four-layer

configuration

Let v be the complex conjugate of the function v. Multiplying (157) by v and integrating from 0 to L over z,
we obtain

∫ L

0

|v′|2dz + iµω̃

∫ L

0

σ(z)|v|2dz + kb
∣

∣v(L, ω̃)
∣

∣

2
= 0.

Separating the real and imaginary parts, we obtain

∫ L

0

|v′|2dz + 1√
2

√

µω̃σb
∣

∣v(L, ω̃)
∣

∣

2
= 0,

µω̃

∫ L

0

σ(z)|v′|2dz + 1√
2

√

µω̃σb
∣

∣v(L, ω̃)
∣

∣

2
= 0.

Hence, v(z, ω̃) ≡ 0.
Now we show that u(z, ω̃) 6= 0 on [0, L] × [ω̃min,∞). Assume that the opposite is true, i.e., there exists a

pair (z0, ω̃0) such that u(z0, ω̃0) = 0, (z0, ω̃0) ∈ [0, L]× [ω̃min,∞). Because of (7), z0 6= 0. Suppose z0 ∈ (0, L).
It follows from the uniqueness result that u(z, ω̃0) = 0 for z ∈ [z0, L]. This implies that u(z, ω̃0) = 0 for all
z ∈ [0, L], which contradicts to (7). Let z0 = L. It follows from (8) that u′(z0, ω̃0) = u(z0, ω̃0) = 0. However,
this leads to u(z, ω̃0) = 0 for all z ∈ [0, L].

Thus, Lemma 1 is proved.

Appendix B

In this appendix, we discuss the uniqueness results for Inverse Problems I and II. We first point out that
the solution u(z, ω̃) to the boundary value problem (6) – (8) is an analytic function of real variable ω̃. Hence,
the uniqueness result for Inverse Problem II follows from the uniqueness result for Inverse Problem I. Therefore,
below we consider Inverse Problem I only. In the case of piecewise analytic function σ(z), the uniqueness theorem
for this problem was first proven in [3]. If σ(z) ∈ C2[0,∞), σ(z) > const > 0, σb > 0, the analogous result can
also be established. We outline briefly the proof.
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First, we observe that the solution of problem (6) – (8) can be extended on the half-axis (0,∞) via solving
the problem

u′′(z, ω̃)− iµω̃σ(z)u(z, ω̃) = 0, 0 < z <∞, (160)

u(0, ω̃) = 1, (161)

lim
z→∞

[

u′(z, ω̃) + kb(ω̃)u(z, ω)
]

= 0. (162)

It can be proven that the solutions of boundary value problems (6) – (8) and (160) – (162) coincide for z ∈ [0, L).
Consider an auxiliary hyperbolic boundary value problem

µσ(z)vtt = vzz , 0 < z <∞, (163)

v(0, t) = δ(t), (164)

v(z, 0) = vt(z, 0) = 0. (165)

We formulate the following problem.
Inverse Problem III. Given the function

ψ(t) = vz(0, t), 0 < t <∞, (166)

find a function σ(z) for which equations (163) – (166) are satisfied.
The following formula holds for a sufficiently large positive ω̃:

u(z, ω̃) =

∫ ∞

0

exp (−
√
iω̃ t)v(z, t) dt. (167)

Since (167) is a Laplace-like transform, it is a one-to-one operator. Thus, the uniqueness result for Inverse
Problem I follows from the uniqueness result for Inverse Problem III.

Consider the new variable x = x(z) [31]

x =

∫ z

0

√

µσ(y) dy (168)

and introduce the function

S(x) =

√

σ(0)

σ(z(x))
. (169)

Let

a(x) =
S′′(x)

S(x)
− 2

[

S′(x)

S(x)

]2

. (170)

Then the boundary value problem (163) – (165) can be reduced to the problem

vtt = vxx + a(x)v, 0 < x <∞, (171)

v(0, t) = δ(t), (172)

v(x, 0) = vt(x, 0) = 0. (173)

The data for this problem are

vx(0, t) =
1

√

µσ(0)
ψ(t). (174)

For brevity, we assume that both the values σ(0) and σ′(0) are known. Then, if the function a(x) is known,
then the function σ(z) is determined. The uniqueness result for a certain hyperbolic inverse problem, which is
similar to problem (171) – (173), was proven in [3] via obtaining the system of Volterra-like integral equations
of the second kind. The proof of the uniqueness result for problem (171) – (173) can be analogously obtained.
Thus, the following theorem is true.

Theorem 4. Both the Inverse Problems I and II have at most one solution σ(z) satisfying the following
conditions: (1) σ(z) ∈ C2[0,∞), (2) σ(z) > const > 0, (3) σ(z) = σb = const for z > L, and (4) the values σ(0)
and σ′(0) are known.
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In addition, it follows from (167) – (173) that the asymptotic behavior of the functions ∂su/∂zs(z, ω̃) is

∂s

∂zs
exp

[

−
√

iω̃µ ·
∫ z

0

√

σ(y) dy

]

·
[

1 +O(ω̃−1/2)
]

, ω̃ → ∞, s = 0, 1, 2.

This justifies the convergence of the integrals in (17), (132), and (133). In dimensionless variables, the asymptotic
formula has the form

√
2π

∂s

∂ξs
exp

[

−
√

iωµ ·
∫ Lξ

0

√

σ(ζ) dζ

]

·
[

1 +O(ω−1/2)
]

, ω → ∞, s = 0, 1, 2.
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