УДК 519.683.4

doi 10.26089/NumMet.v18r320

ОБ ОДНОМ МЕТОДЕ СОВМЕСТНОГО РЕШЕНИЯ ЗАДАЧИ ФИЛЬТРАЦИИ И СИСТЕМЫ УРАВНЕНИЙ ТЕОРИИ УПРУГОСТИ

К. Ю. Богачев¹, Е. В. Писковский², Г. Г. Пяцкий³

Предложен метод совместного решения задачи фильтрации вязкой сжимаемой смеси в пористой среде и системы уравнений теории упругости в случае малых деформаций. В предложенном методе применяется комбинированный алгоритм, использующий расщепление по физическим процессам и позволяющий преодолеть ряд недостатков известных подходов к совместному решению указанных задач. Приведенные численные эксперименты подтверждают практическую применимость метода.

Ключевые слова: геомеханика, фильтрация, метод конечных элементов, метод конечных объемов, расщепление по физическим процессам, совместное решение.

1. Введение. В настоящей статье рассматривается совместное решение задачи фильтрации вязкой сжимаемой смеси в пористой среде и системы уравнений теории упругости. Такая задача возникает в процессе моделирования добычи углеводородного сырья с учетом деформации коллектора. В литературе описаны следующие подходы:

 модульный подход: задача фильтрации и задача упругости решаются независимо и последовательно; используются различные стратегии сопряжения, по-разному влияя на скорость и точность расчета [1– 3];

— полностью сопряженный подход [4]: задача фильтрации и задача упругости решаются одновременно в одной системе.

Перечисленные методы имеют ряд недостатков: в рамках модульного подхода необходимо совершать итерации по согласованию решения задачи фильтрации и решения системы уравнений теории упругости [1–3], а в рамках полностью сопряженного подхода возникают существенно нелинейные уравнения, решение которых требует больших объемов вычислений [4].

В нашей работе предлагается гибридный метод — полностью сопряженный подход, в котором нелинейная система алгебраических уравнений решается методом расщепления по физическим процессам [5]. Этот подход можно также считать вариантом модульного подхода, при котором вместо итераций по сопряжению используется один шаг метода расщепления. Кроме того, в предложенном методе используется единая сетка для аппроксимации задач фильтрации и упругости. Это существенно ускоряет работу алгоритма и уменьшает накладные расходы на интерполяцию сеточных функций. Приведенные численные эксперименты показывают практическую применимость предложенного метода.

2. Математическая постановка задачи.

2.1. Математическая модель. Пусть в трехмерном пространстве задана декартова система координат. Задачу фильтрации решают с использованием следующих уравнений изотермической композиционной модели [6, 7]:

$$\begin{cases} \frac{\partial}{\partial t} \left(\phi N_c \right) = -\operatorname{div} \sum_{P=1}^{n'_P} x_{c,P} \xi_P U_P + q_c, \quad c = 1, \dots, n_c, \\ \sum_{P=O,W,G} S_P = 1. \end{cases}$$
(1)

Здесь n_c — количество компонентов; $N_i = N_i(t, x, y, z)$, $i = 1, ..., n_c$, — молярная плотность компонента (неизвестная величина), $\mathbf{N} = (N_1, N_2, ..., N_{n_c})$; O, W, G — фазы в задаче фильтрации: нефть, вода, газ; $U_P = U_P(p, \mathbf{N})$ — вектор скорости потока фазы p = O, W, G [7]; $S_P = S_p(p, \mathbf{N})$ — насыщенность P-й

¹ Московский государственный университет им. М.В. Ломоносова, механико-математический факультет, Ленинские горы, 119992, Москва; доцент, e-mail: bogachev@mech.math.msu.su

² ООО Rock Flow Dynamics, Профсоюзная ул., 25А, 117418, Москва; главный специалист, аспирант, e-mail: evgeny.piskovskiy@gmail.com

³ Московский государственный университет им. М. В. Ломоносова, механико-математический факультет, Ленинские горы, 119992, Москва; аспирант, e-mail: piatskgeorge@mail.ru

⁽с) Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

фазы, P = O, W, G; p = p(t, x, y, z) — давление в фазах воды, нефти и газа (неизвестная величина); $\phi = \phi(p, x, y, z)$ — пористость; $x_{c,P} = x_{c,P}(p, N)$ — молярная доля компонента c в фазе $P; \xi_P = \xi_P(p, N)$ молярная плотность фазы; $q_c = q_c(p, N, t, x, y, z)$ — источник компонента c (скважина).

На внешней границе резервуара ставятся условия непротекания (однородные условия Неймана). Начальные условия вычисляются либо по заданным значениям N_c и p, либо из условий гидростатического равновесия.

В такой постановке пористость $\phi = \phi(p, x, y, z)$ является явной функцией от давления. Если известна пористость при некотором опорном давлении p_{ref} , то пористость при давлении p можно получить, например, разложением в ряд Тейлора [7]:

$$\phi(p, x, y, z) \approx \phi_r(p_r, x, y, z) \left(1 + c(p - p_r) + \frac{1}{2} c^2 (p - p_r)^2 \right),$$

где $\phi_r(p_r, x, y, z)$ — пористость при опорном давлении p_r и c — коэффициент сжимаемости.

Основной недостаток такой модели — предположение о том, что плотность породы не зависит от времени. Поток смеси может вызывать деформацию породы. Введем зависимость от времени и добавим в систему уравнение сохранения массы породы [6]:

$$\frac{\partial}{\partial t} \left(\rho_r (1 - \phi) \right) = -\operatorname{div} \left(\frac{\partial \boldsymbol{u}}{\partial t} \left(\rho_r (1 - \phi) \right) \right),$$

где $\boldsymbol{u} = \boldsymbol{u}(t, x, y, z)$ — вектор деформации (неизвестный); $\rho_r = \rho_r(x, y, z)$ — заданная плотность породы; $\phi = \phi(t, x, y, z)$ — пористость (неизвестная).

Равновесие упругого тела задается уравнением равновесия [9]

$$\sum_{i} \frac{\partial \boldsymbol{\sigma}_{i}}{\partial x_{i}} = \boldsymbol{f},\tag{2}$$

где $\sigma_i = \sum_j \sigma_{ij} e_i$ — вектор напряжений; σ_{ij} — тензор напряжений; e_i — орты системы координат.

Для линейно-упругого тела уравнение (2) можно переписать в виде следующего уравнения Ламе [9]:

$$\nabla ((\lambda + \mu) \operatorname{div} \boldsymbol{u}) + \nabla \cdot (\mu \nabla \boldsymbol{u}) + \rho_r \boldsymbol{g} - \alpha \nabla p = 0.$$
(3)

Здесь $\lambda = \lambda(x, y, z), \ \mu = \mu(x, y, z)$ — заданные коэффициенты Ламе; $\alpha = \alpha(x, y, z)$ — заданный модуль Био [10].

Таким образом, полная совместная система уравнений, описывающая фильтрационные процессы в пласте и геомеханические эффекты, имеет следующий вид:

$$\left(\frac{\partial}{\partial t}\left(\phi N_{c}\right) = -\operatorname{div}\sum_{P=O,W,G}x_{c,P}\xi_{P}U_{P} + q_{c}, \quad c = 1,\dots,n_{c}\right)$$

$$\tag{4}$$

$$\begin{cases} \frac{\partial}{\partial t} \left(\rho_r (1 - \phi) \right) = -\operatorname{div} \left(\frac{\partial \vec{u}}{\partial t} \left(\rho_r (1 - \phi) \right) \right) \tag{5}$$

$$\operatorname{grad}((\lambda + \mu)\operatorname{div} \vec{u}) + \nabla \cdot (\mu \nabla \vec{u}) + \rho_r \vec{g} - \alpha \nabla p = 0$$
(6)

$$\left(\sum_{P=O,W,G} S_P = 1\right) \tag{7}$$

В этой системе $n_c + 5$ уравнений для $n_c + 5$ неизвестных функций $(N_1, N_2, \ldots, N_{n_c}, p, \phi, u^1, u^2, u^3)$.

2.2. Граничные условия уравнения Ламе. Пусть Ω — непрерывная область с границей ∂Ω. Разобьем границу на две кусочно-непрерывные части: $\partial \Omega = \Gamma_1 \cup \Gamma_2$. В качестве граничных условий для уравнения Ламе будем рассматривать

— граничные условия Дирихле на Г₁:

$$\boldsymbol{u}\big|_{\partial\Gamma_1} = 0, \tag{8}$$

— граничные условия Неймана на Г₂:

$$\boldsymbol{\sigma}_i \cdot \boldsymbol{n}\Big|_{\partial \Gamma_2} = \hat{\sigma}_i. \tag{9}$$

Как правило, в качестве Γ_1 рассматривают боковую границу резервуара и подошву пласта, а в качестве Γ_2 — кровлю пласта.

2.3. Дискретизация. Задача фильтрации (1) по времени аппроксимируется полностью неявной схемой, а по пространственным переменным — методом конечных объемов [6–8].

Уравнения равновесия Ламе (3) по времени аппроксимируются полностью неявной схемой, а по пространственным переменным — методом конечных элементов.

Сочетание двух различных методов предполагает использование двух различных сеток. Одним из основных преимуществ описываемого метода является использование одной и той же сетки. Метод конечных объемов в качестве степеней свободы использует трехмерные блоки-восьмивершинники. В качестве степеней свободы для метода конечных элементов будем использовать вершины этих блоков, не лежащие на Γ_1 . Обозначим множество всех вершин P.

Введем пространство функций $H(\Omega) = \left\{ v \in W_2^1(\Omega) : v |_{\Gamma_1} = 0 \right\}$. Умножим уравнение Ламе (3) с обеих сторон на тестовую функцию $v \in H(\Omega)$ и проинтегрируем по всей области Ω :

$$\int_{\Omega} \nabla \big((\lambda + \mu) \operatorname{div} \boldsymbol{u} \big) v \, d\Omega + \int_{\Omega} \nabla \cdot (\mu \nabla \boldsymbol{u}) v \, d\Omega + \int_{\Omega} \rho \boldsymbol{g} v \, d\Omega - \int_{\Omega} \alpha \nabla p v \, d\Omega = 0.$$

После интегрирования по частям и применения формулы Гаусса-Остроградского получим

$$\int_{\Omega} (\lambda + \mu) \operatorname{div} \boldsymbol{u} \nabla v \, d\Omega + \int_{\Omega} \mu \nabla u \nabla v \, d\Omega - \int_{\Omega} \alpha p \nabla v \, d\Omega - \int_{\Omega} \rho \boldsymbol{g} v \, d\Omega =$$

$$= \oint_{\partial \Omega} (\lambda + \mu) \operatorname{div} \boldsymbol{u} v \boldsymbol{n} \, dS + \oint_{\partial \Omega} \mu \nabla \boldsymbol{u} v \boldsymbol{n} \, dS - \oint_{\partial \Omega} \alpha p v \boldsymbol{n} \, dS.$$
(10)

Из уравнений (2) и (3) следует равенство

$$\sum_{i} \frac{\partial \boldsymbol{\sigma}_{i}}{\partial x_{i}} = \nabla \cdot (\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}) = \nabla ((\lambda + \mu) \operatorname{div} \boldsymbol{u}) + \nabla \cdot (\mu \nabla \boldsymbol{u}) - \alpha \nabla p.$$
(11)

Так как $v \in H(\Omega)$, то поверхностные интегралы в правой части уравнения (10) по границе Γ_1 равны нулю. Из (11) и подстановки граничных условий (8), (9) получим

$$\int_{\Omega} (\lambda + \mu) \operatorname{div} \boldsymbol{u} \nabla v \, d\Omega + \int_{\Omega} \mu \nabla u \nabla v \, d\Omega - \int_{\Omega} \alpha p \nabla v \, d\Omega - \int_{\Omega} \rho \boldsymbol{g} v \, d\Omega = \oint_{\partial \Gamma_2} (\hat{\sigma}_1, \hat{\sigma}_2, \hat{\sigma}_3) \, v \, d\Gamma_2.$$
(12)

Рассмотрим произвольный блок V гидродинамической сетки с вершинами в точках (x_i, y_i, z_i) при i = 1, ..., 8. Введем локальную систему координат, в которой вершины блока V имеют координаты (ξ_i, η_i, ζ_i) , где $\xi_i, \eta_i, \zeta_i = \pm 1$. Предполагается существование такой локальной системы координат. Введем функцию $G_{i,V}$ в локальной системе координат, определенную внутри блока V:

$$G_{i,V}(\xi,\eta,\zeta) = \frac{1}{8} (1+\xi_i\xi)(1+\eta_i\eta)(1+\zeta_i\zeta),$$

Вне блока V положим функцию формы $G_{i,V}$ равной нулю. Функция $G_{i,V}$ называется функцией формы блока V. Отображение F из локальной в глобальную систему координат имеет следующий вид:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sum_{i:i \in V} G_{i,V}(\xi,\eta,\zeta) \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}.$$

Базисная функция (конечный элемент) $f_i = f_i(x, y, z)$ для вершины i — это сумма функций форм $G_{i,V}(x, y, z)$, для которых вершина i общая:

$$f_i(x, y, z) = \sum_{V:i \in V} G_{i,V}(x, y, z).$$
(13)

Решение уравнения (3) u = u(t, x, y, z) ищется в виде разложения по базисным функциям f_i :

$$u(t, x, y, z) = \sum_{i} u_i(t) f_i(x, y, z).$$

Подставим это разложение в (12). Для каждой вершины $k \in P$ в качестве тестовой функции v возьмем базисную функцию $f_k, k = 1, ..., |P|$:

$$\sum_{i} u_{i} \int_{\Omega} (\lambda + \mu) \operatorname{div} f_{i} \nabla f_{k} \, d\Omega + \sum_{i} u_{i} \int_{\Omega} \mu \nabla f_{i} \nabla f_{k} \, d\Omega - \int_{\Omega} \alpha p \nabla f_{k} \, d\Omega - \int_{\Omega} \rho \boldsymbol{g} f_{k} \, d\Omega =$$

$$= \oint_{\partial \Gamma_{2}} (\hat{\sigma}_{1}, \hat{\sigma}_{2}, \hat{\sigma}_{3}) \, f_{k} \, d\Gamma_{2}.$$
(14)

Система (14) состоит из |P| векторных уравнений относительно |P| неизвестных u_i .

3. Решение совместной системы. Уравнения фильтрации (4), (5), (7) по пространственным переменным аппроксимируются методом конечных объемов [6, 7], а уравнения Ламе (6) — методом конечных элементов с базисными функциями вида (13). Оба метода используют одну сетку, что существенно ускоряет работу всего алгоритма и не требует интерполяции сеточных функций. Решение дискретизированной системы (4)–(7) ищется методом расщепления по физическим процессам [5]. На каждом временно́м шаге решается:

— геомеханическая часть: решение дискретизированного уравнения Ламе (14) при фиксированном на этом временно́м шаге давлении p(x, y, z);

— гидродинамическая часть: совместное решение дискретизированных уравнений фильтрации и сохранения массы породы (4), (5), (7).

Процесс решения совместной системы и обновления переменных (u, p, N, ϕ) на шагах $t_i, i = 0, 1, 2, ...,$ можно представить схематически следующим образом:

4. Численные результаты. Метод был реализован на языке C++ в составе интерактивного пакета для гидродинамического моделирования tNavigator. В графическом интерфейсе также добавлена визуализация векторных карт смещений **u** и карты порового объема как функций времени.

Рис. 1. Карта смещений породы

Рис. 2. Увеличение порового объема в окрестности нагнетательной скважины

Рис. 3. Уменьшение порового объема в окрестности добывающей скважины

4.1. Визуализация геомеханических эффектов. Рассмотрим модель, отражающую функционирование одной ячейки месторождения с шахматно-рядной схемой разработки. Размер модели: $64 \times 64 \times 4$. Размер каждого блока $25 \times 25 \times 10$ метров. В нижнем углу модели расположена добывающая скважина, в верхнем — нагнетательная.

Процесс фильтрации в этой модели происходил в течение года. На рис. 1 видна полная карта смещений породы, вызванных фильтрацией. На картах поровых объемов (рис. 2, 3) видно сжатие материала породы в окрестности добывающей скважины и растяжение в окрестности нагнетательной.

4.2. Учет критерия разрушения породы. В процессе моделирования разработки месторождения важно учитывать возникновение разрывных нарушений породы. Для учета разрывов материала коллектора используется критерий прочности Мора–Кулона [11]. На рис. 4 показаны нарушения критерия прочности породы в окрестности горизонтальной нагнетательной скважины.

Рис. 4. Карта разрушений породы в окрестности скважины

5. Выводы. Предложен метод совместного решения системы уравнений фильтрации вязкой сжимаемой смеси в пористой среде и системы уравнений теории упругости в случае малых деформаций, использующий единую сетку для аппроксимации обеих систем и метод расщепления по физическим процессам для их решения. Численные эксперименты показали практическую применимость метода.

Авторы выражают благодарность С.В. Милютину за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

- Fredrich J.T. Holland J.F., Fossum A.F., Bruno M.S. One-way coupled reservoirgeomechanical modeling of the Lost Hills oil field, California // Proc. 38th U.S. Rock Mechanics Symposium. Rotterdam: Balkema Publ., 2001. 181–188.
- 2. Settari A., Mourits F.M. A coupled reservoir and geomechanical simulation system // SPE J. 1998. 3, N 3. 219–226.
- 3. Шайбаков А., Корнева Д., Богачев К., Эйдинов Д., Писковский Е. Геолого-гидродинамическое моделирование с учетом механических свойств пласта // Труды Российской нефтегазовой технической конференции. Доклад № 176634. М., 2015.
- 4. Stone T., Bowen G., Papanastasiou P., Fuller J. Fully coupled geomechanics in a commercial reservoir simulator // Proc. SPE European Petroleum Conference. Paris, 2000. doi 10.2118/65107-MS.
- 5. Марчук Г.И. Методы вычислительной математики. М.: Наука, 1977.
- 6. Aziz K., Settari A. Petroleum reservoir simulation. London : Applied Science Publishers, 1979.
- 7. Chen Z., Huan G., Ma Y. Computational methods for multiphase flows in porous media. Philadelphia: SIAM Press, 2006.
- Богачев К.Ю., Мельниченко Н.С. О пространственной аппроксимации методом подсеток для задачи фильтрации вязкой сжимаемой жидкости в пористой среде // Вычислительные методы и программирование. 2008. 9. 191–199.
- 9. Седов Л.И. Механика сплошной среды. М.: Наука, 1970.
- 10. Biot M.A. General theory of three-dimensional consolidation // Journal of Applied Physics. 1941. 12, N 2. 155–164.
- 11. Белоусов В.В. Структурная геология. М.: Изд-во Моск. ун-та, 1986.

Поступила в редакцию 23.03.2017

A Method for the Coupled Solution of the Filtration Problem and the System of Elasticity Equations

K. Yu. Bogachev¹, E. V. Piskovskiy², and G. G. Piatsky³

- ¹ Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Leninskie Gory, Moscow, 119899, Russia; Dr. Sci., Associate Professor, e-mail: bogachev@mech.math.msu.su
- ² Rock Flow Dynamics Company; ulitsa Profsoyuznaya 25A, Moscow, 117418, Russia; Leading Specialist, e-mail: evgeny.piskovskiy@gmail.com
- ³ Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Leninskie Gory, Moscow, 119899, Russia; Graduate Student, e-mail: piatskgeorge@mail.ru

225

Received March 23, 2017

Abstract: A method for the coupled solution of the vicious compressible fluid filtration problem in a porous medium and the system of elasticity equations in the case of small strains is proposed. The proposed method uses a combined algorithm based on splitting the original problem with respect to physical processes. The algorithm allows one to overcome a number of disadvantages of well-known approaches. The numerical results confirm the efficiency of the proposed method for practice.

Keywords: geomechanics, filtration, finite element method, finite volume method, method of splitting with respect to physical processes, coupled solution.

References

1. J. T. Fredrich, J. F. Holland, A. F. Fossum, and M. S. Bruno, "One-Way Coupled Reservoirgeomechanical Modeling of the Lost Hills Oil Field, California," in *Proc. 38th U.S. Rock Mechanics Symposium, Washington, D.C., July 7–10, 2001* (Balkema Publ., Rotterdam, 2001), pp. 181–188.

2. A. Settari and F. M. Mourits, "A Coupled Reservoir and Geomechanical Simulation System," SPE J. **3** (3), 219–226 (1998).

3. A. Shaybakov, D. Korneva, K. Bogachev, et al., "Geological and Hydrodynamical Simulation with Formation Mechanical Properties Taken into Account," in *Proc. SPE Russian Technology Conf., Moscow, Russia, October 26–28, 2015*, Conference Report No. 176634.

4. T. Stone, G. Bowen, P. Papanastasiou, and J. Fuller, "Fully Coupled Geomechanics in a Commercial Reservoir Simulator," in *Proc. SPE European Petroleum Conference, Paris, France, October 24–25, 2000*, doi 10.2118/65107-MS

5. G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1977; Springer, New York, 1982).

6. K. Aziz and A. Settari, *Petroleum Reservoir Simulation* (Appl. Sci. Publ., London, 1979).

7. Z. Chen, G. Huan, and Y. Ma, *Computational Methods for Multiphase Flows in Porous Media* (SIAM Press, Philadelphia, 2006).

8. K. Yu. Bogachev and N. S. Melnichenko, "Spatial Approximation by the Subgrid Method in the Filtration Problem for a Viscous Compressible Fluid in a Porous Medium," Vychisl. Metody Programm. 9, 191–199 (2008).

9. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1970; World Scientific, River Edge, 1997),

10. M. A. Biot, "General Theory of Three-Dimensional Consolidation," J. Appl. Phys. **12** (2), 155–164 (1941).

11. V. V. Belousov, Structural Geology (Mosk. Gos. Univ., Moscow, 1986) [in Russian].