УДК 519.622

doi 10.26089/NumMet.v19r216

К ТЕОРИИ ВЫЧИСЛЕНИЯ ОРТОГОНАЛЬНОГО РАЗЛОЖЕНИЯ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА

О.Б. Арушанян 1 , С.Ф. Залеткин 2

Доказана теорема о разрешимости нелинейной системы уравнений относительно приближенных значений коэффициентов Чебышёва старшей производной, входящей в дифференциальное уравнение. Теорема является теоретическим обоснованием ранее предложенного приближенного метода интегрирования канонических систем обыкновенных дифференциальных уравнений второго порядка на основе ортогональных разложений с использованием многочленов Чебышёва первого рода.

Ключевые слова: обыкновенные дифференциальные уравнения, задача Коши, приближенные аналитические методы, численные методы, ортогональные разложения, смещенные ряды Чебышёва, квадратурные формулы Маркова.

Введение. Рассматривается приближенный метод решения задачи Коши для канонической системы M обыкновенных дифференциальных уравнений второго порядка

$$y''(x) = f(x, y(x), y'(x)), \quad y(x_0) = y_0, \quad y'(x_0) = y'_0, \quad x_0 \le x \le x_0 + X.$$
 (1)

Предполагается, что функция f(x, y, y') непрерывна в области D определения системы вместе с частными производными до некоторого порядка и на отрезке $[x_0, x_0 + X]$ задача Коши (1) имеет единственное

Приближенный метод решения задачи (1) основан на аппроксимации правой части системы, взятой на решении этой задачи, алгебраическим многочленом и последующем его интегрировании. Многочленное приближение для правой части можно выбирать разными способами. Одним из приемов получения многочленных приближений является интерполирование. В предыдущих работах авторов [1–3] предложен иной способ построения многочленного приближения, который опирается на разложение правой части системы

$$y''(x) = f(x, y(x), y'(x)) = f(x_0 + \alpha h, y(x_0 + \alpha h), y'(x_0 + \alpha h)) = \Phi(\alpha), \quad 0 \leqslant \alpha \leqslant 1, \quad h \leqslant X,$$

на некотором элементарном сегменте $[x_0, x_0+h] \subset [x_0, x_0+X]$ в ряд по смещенным многочленам Чебышёва первого рода (смещенный ряд Чебышёва)

$$\Phi(\alpha) = \sum_{i=0}^{\infty} a_i^* [\Phi] T_i^*(\alpha), \quad a_i^* [\Phi] = \frac{2}{\pi} \int_0^1 \frac{\Phi(\alpha) T_i^*(\alpha)}{\sqrt{\alpha(1-\alpha)}} d\alpha, \quad T_i^*(\alpha) = T_i(2\alpha - 1).$$
 (2)

Здесь штрих у знака суммы означает, что слагаемое с индексом 0 берется с дополнительным множителем 1/2, $T_i(t)$ — многочлен Чебышёва первого рода на отрезке [-1, 1]. Если коэффициенты этого разложения (коэффициенты Чебышёва) известны, то решение $y(x_0 + \alpha h)$ задачи (1) и его производную $y'(x_0 + \alpha h)$ можно легко получить также в виде смещенных рядов Чебышёва на $[x_0, x_0 + h]$:

$$y'(x_0 + \alpha h) = \sum_{i=0}^{\infty} a_i^*[y'] T_i^*(\alpha), \quad y(x_0 + \alpha h) = \sum_{i=0}^{\infty} a_i^*[y] T_i^*(\alpha), \quad 0 \leqslant \alpha \leqslant 1.$$
 (3)

Частичные суммы указанных рядов используются в качестве многочленов, аппроксимирующих решение задачи Коши и его производные первого и второго порядков.

¹ Московский государственный университет им. М.В. Ломоносова, Научно-исследовательский вычис-

лительный центр, Ленинские горы, 11992, Москва; зав. лабораторией, e-mail: arush@srcc.msu.ru 2 Московский государственный университет им. М.В. Ломоносова, Научно-исследовательский вычислительный центр, Ленинские горы, 119992, Москва; ст. науч. сотр., e-mail: iraz@srcc.msu.ru

[©] Научно-исследовательский вычислительный центр МГУ им. М.В. Ломоносова

Приближенные значения коэффициентов Чебышёва правой части $\Phi(\alpha)$ в данном методе получаются как решение некоторой нелинейной системы конечных уравнений. Важное место в настоящей статье отводится изучению условий, при которых эта система конечных уравнений имеет единственное решение, и способу нахождения решения этой системы. Полученные в статье результаты сформулированы в виде теоремы, которая, таким образом, является теоретическим обоснованием рассматриваемого метода интегрирования обыкновенных дифференциальных уравнений.

1. Формулы, связывающие коэффициенты Чебышёва первой производной решения задачи Коши с коэффициентами Чебышёва правой части канонической системы. Коэффициенты Чебышёва производной $y'(x_0 + \alpha h)$, рассматриваемой как функция переменной α , связаны с коэффициентами Чебышёва функции $\Phi(\alpha)$ с помощью следующих формул: для ненулевых коэффициентов

$$a_i^* [y'(x_0 + \alpha h)] = \frac{h}{4i} (a_{i-1}^* [\Phi] - a_{i+1}^* [\Phi]), \quad i > 0;$$
(4)

для нулевого коэффициента

$$\frac{1}{2}a_0^* \left[y'(x_0 + \alpha h) \right] = y_0' + \frac{h}{4} \left(a_0^* [\Phi] - \frac{1}{2} a_1^* [\Phi] \right) + \frac{h}{4} \sum_{j=2}^{\infty} (-1)^j \left(\frac{1}{j+1} - \frac{1}{j-1} \right) a_j^* [\Phi]. \tag{5}$$

2. Формулы, связывающие коэффициенты Чебышёва решения задачи Коши с коэффициентами Чебышёва правой части канонической системы. Коэффициенты Чебышёва решения $y(x_0+\alpha h)$, рассматриваемого как функция переменной α , связаны с коэффициентами Чебышёва функции $\Phi(\alpha)$ с помощью следующих формул: для ненулевых коэффициентов

$$a_i^* \left[y(x_0 + \alpha h) \right] = \frac{h^2}{16} \frac{(i+1)a_{i-2}^* [\Phi] - 2ia_i^* [\Phi] + (i-1)a_{i+2}^* [\Phi]}{i(i^2 - 1)}, \quad i > 2;$$
 (6)

$$a_2^* \left[y(x_0 + \alpha h) \right] = \frac{h^2}{96} \left(3a_0^* [\Phi] - 4a_2^* [\Phi] + a_4^* [\Phi] \right); \tag{7}$$

$$a_1^* \left[y(x_0 + \alpha h) \right] = \frac{h}{2} \left[y_0' + \frac{h}{4} \left(a_0^* [\Phi] - \frac{3}{4} a_1^* [\Phi] + \frac{1}{4} a_3^* [\Phi] \right) + \frac{h}{4} \sum_{j=2}^{\infty} (-1)^j \left(\frac{1}{j+1} - \frac{1}{j-1} \right) a_j^* [\Phi] \right]; \tag{8}$$

для нулевого коэффициента

$$\frac{1}{2}a_0^* \left[y(x_0 + \alpha h) \right] = y_0 + \frac{h}{2}y_0' + \frac{h^2}{32} \left(3a_0^* [\Phi] - 2a_1^* [\Phi] + a_2^* [\Phi] \right) + \\
+ \frac{h^2}{8} \sum_{j=2}^{\infty} (-1)^j \left(\frac{1}{j+1} - \frac{1}{j-1} \right) a_j^* [\Phi] - \frac{h^2}{16} \sum_{j=1}^{\infty} (-1)^j \left(\frac{1}{j+2} - \frac{1}{j} \right) \frac{a_j^* [\Phi] - a_{j+2}^* [\Phi]}{j+1} .$$
(9)

3. Вывод уравнений для приближенных значений коэффициентов Чебышёва правой части канонической системы. Из допущения о гладкости правой части в (1) следует равномерная сходимость рядов (2), (3) на $[x_0, x_0+h]$. Замена рядов для $\Phi(\alpha), y'(x_0+\alpha h), y(x_0+\alpha h)$ их частичными суммами k-го, (k+1)-го и (k+2)-го порядков соответственно, применение формулы численного интегрирования Маркова [4] на отрезке [0,1] с узлами $\alpha_0^{(1)}=0, \, \alpha_j^{(1)}=\frac{1}{2}\left(1+\cos\frac{(2j-1)\pi}{2k+1}\right), \, j=1,\ldots,k,$ и весовой функцией $\frac{1}{\sqrt{\alpha(1-\alpha)}}$ для вычисления интеграла $a_i^*[\Phi]$ в (2) приводят к следующей системе уравнений для приближенных значений коэффициентов Чебышёва $a_i^*[\tilde{P}_k] \approx a_i^*[\Phi], \, i=0,1,\ldots,k,$ правой части системы (1):

$$a_i^*[\tilde{P}_k] = B \sum_{j=0}^{k} f(x_j^{(1)}, U(x_j^{(1)}; a_0^*[\tilde{P}_k], \dots, a_k^*[\tilde{P}_k]), \quad U'(x_j^{(1)}; a_0^*[\tilde{P}_k], \dots, a_k^*[\tilde{P}_k])) T_i^*(\alpha_j^{(1)}). \tag{10}$$

Здесь $x_j^{(1)}=x_0+\alpha_j^{(1)}h,\ B=\frac{4}{2k+1}$. Используя квадратурную формулу Маркова [5] на отрезке [0, 1] с узлами $\alpha_0^{(2)}=0,\ \alpha_j^{(2)}=\frac{1}{2}\left(1+\cos\frac{j\pi}{k+1}\right),\ j=1,\ldots,k,\ \alpha_{k+1}^{(2)}=1,$ соответствующую систему уравнений

представим в виде

$$a_i^*[\tilde{P}_k] = D \sum_{j=0}^{k+1} {}'' f(x_j^{(2)}, U(x_j^{(2)}; a_0^*[\tilde{P}_k], \dots, a_k^*[\tilde{P}_k]), \quad U'(x_j^{(2)}; a_0^*[\tilde{P}_k], \dots, a_k^*[\tilde{P}_k])) T_i^*(\alpha_j^{(2)}), \tag{11}$$

где $x_j^{(2)} = x_0 + \alpha_j^{(2)} h$, $D = \frac{2}{k+1}$; два штриха у знака суммы означают, что слагаемые с индексами 0 и k+1 берутся с дополнительным множителем 1/2. Второй и третий аргументы функции f в (10) и (11) представляют приближенное решение $U(x_0 + \alpha h) \approx y(x_0 + \alpha h)$ и его производную $U'(x_0 + \alpha h) \approx y'(x_0 + \alpha h)$, а именно

$$U(x; a_0^*[\tilde{P}_k], \dots, a_k^*[\tilde{P}_k]) = \sum_{l=0}^{k+2} a_l^*[U]T_l^*(\alpha), \quad U'(x; a_0^*[\tilde{P}_k], \dots, a_k^*[\tilde{P}_k]) = \sum_{l=0}^{k+1} a_l^*[U']T_l^*(\alpha).$$

Коэффициенты $a_l^*[U]$ приближенного решения U(x) в (10) и (11) вычисляются с помощью соотношений (6)–(9), в левых частях которых требуется y заменить на U, а в правых частях необходимо $a_q^*[\Phi]$ поменять на $a_q^*[\tilde{P}_k]$ при $q\leqslant k$ и на 0 при q>k. Коэффициенты $a_l^*[U']$ производной U'(x) в (10) и (11) вычисляются аналогично с помощью соотношений (4), (5). Здесь мы рассматриваем приближенное решение $U(x_0+\alpha h)$ и его производную $U'(x_0+\alpha h)$ как функции не только аргумента $x_0+\alpha h$, но и аргументов $a_0^*[\tilde{P}_k],\ldots,a_k^*[\tilde{P}_k]$. Обе системы (10) и (11) могут быть записаны в виде

$$a_i^*[\tilde{P}_k] = \varphi_i(a_0^*[\tilde{P}_k], a_1^*[\tilde{P}_k], \dots, a_k^*[\tilde{P}_k]), \quad i = 0, 1, \dots, k,$$
 (12)

где φ_i — правая часть в (10) или (11).

4. Оценка частных производных для системы функций φ_i в (12). Обозначим l-ю компоненту вектор—функции φ_i через φ_{li} , а n-ю компоненту вектора $a_m^*[\tilde{P}_k]$ через a_{nm} . Найдем частную производную l-й компоненты функции φ_i по n-й компоненте коэффициента $a_m^*[\tilde{P}_k]$. Для системы (10) имеем (для сокращения записи коэффициенты $a_0^*[\tilde{P}_k]$, ..., $a_k^*[\tilde{P}_k]$ в качестве аргументов функций U и U' указывать не будем):

$$\frac{\partial \varphi_{li}}{\partial a_{nm}} = B \sum_{j=0}^{k} \left[\frac{\partial f_l(x_j^{(1)}, U(x_j^{(1)}), U'(x_j^{(1)}))}{\partial y_n} \frac{\partial U_n(x_j^{(1)})}{\partial a_{nm}} + \frac{\partial f_l(x_j^{(1)}, U(x_j^{(1)}), U'(x_j^{(1)}))}{\partial y_n'} \frac{\partial U_n'(x_j^{(1)})}{\partial a_{nm}} \right] T_i^*(\alpha_j^{(1)})$$
(13)

(мы учли, что каждая компонента векторов U и U' зависит только от одноименных компонент вектора $a_m^*[\tilde{P}_k]$). Аналогичное представление имеет место и для системы (11). Как следует из формул (6)–(9),

выражение для частной производной $\frac{\partial U_n(x_0 + \alpha_j^{(1)}h)}{\partial a_{nm}}$ содержит множитель h^2 . Из формул (4), (5) так-

же вытекает, что выражение для частной производной $\frac{\partial U_n'(x_0 + \alpha_j^{(1)}h)}{\partial a_{nm}}$ содержит множитель h. Таким образом, все слагаемые, входящие в представление (13) для частной производной $\frac{\partial \varphi_{li}}{\partial a_{nm}}$, содержат множители h или h^2 . При этом остальные сомножители в этих слагаемых являются ограниченными функциями. Следовательно, справедлива асимптотическая оценка $\frac{\partial \varphi_{li}}{\partial a_{nm}} = O(h), \ h \to 0$. Если правая часть дифференциального уравнения (1) не зависит от y', т.е. уравнение (1) имеет вид y''(x) = f(x,y(x)), то $\frac{\partial \varphi_{li}}{\partial a_{nm}} = O(h^2), \ h \to 0$. Отсюда следует, что если значение h выбрать достаточно малым, то какая-нибудь норма матрицы, составленной из максимальных (в области изменения переменных) значений модулей частных производных $\left|\frac{\partial \varphi_{li}}{\partial a_{nm}}\right|$, станет меньше единицы.

Из работ [1,5] следует, что невязка ρ_i , которая получается при подстановке в уравнение (12) точных значений коэффициентов Чебышёва правой части $\Phi(\alpha)$ системы (1) вместо $a_i^*[\tilde{P}_k]$, имеет порядок относительно h, равный

$$\rho_i = a_i^*[\Phi] - \varphi_i(a_0^*[\Phi], \dots, a_k^*[\Phi]) = O(h^{k+s}), \quad h \to 0,$$
(14)

где s=1 или s=2 в зависимости от используемой квадратурной формулы Маркова, а именно s=1 для системы (10) и s=2 для системы (11), при этом предполагается, что f(x,y,y') имеет непрерывные частные производные по x,y и y' до порядка 2k+s включительно.

5. О погрешности начальных приближений для коэффициентов Чебышёва правой части канонической системы. В [3] описаны два способа построения двух приближений $a_i^{*(0)}[\tilde{P}_k], i=0,\ldots,k,$ к коэффициентам $a_0^*[\Phi],\ldots,a_k^*[\Phi],$ одно из которых имеет погрешность

$$a_i^*[\Phi] - a_i^{*(0)}[\tilde{P}_k] = O(h^2), \quad i = 0, 1, \dots, k, \quad \text{при} \quad h \to 0,$$
 (15)

а другое — погрешность

$$a_i^*[\Phi] - a_i^{*(0)}[\tilde{P}_k] = O(h^{i+1}), \quad i = 0, 1, \dots, k, \quad \text{при} \quad h \to 0.$$
 (16)

6. Условия, при которых система конечных уравнений (12) имеет единственное решение. Рассмотрим совокупность первых k+1 коэффициентов Чебышёва $a_0^*[\Phi],\ldots,a_k^*[\Phi]$ функции $\Phi(\alpha)$ как точку z_0 в M(k+1)-мерном арифметическом пространстве $R^{M(k+1)}$:

$$z_0 = \left(a_0^*[\Phi], \dots, a_k^*[\Phi]\right) = \left(a_{10}^*[\Phi], \dots, a_{M0}^*[\Phi], \dots, a_{1k}^*[\Phi], \dots, a_{Mk}^*[\Phi]\right), \quad z_0 \in R^{M(k+1)}.$$

Обозначим через G окрестность точки z_0 радиуса r, т.е. множество всех точек данного пространства $z=(a_0,a_1,\ldots,a_k)=(a_{10},\ldots,a_{M0},\ldots,a_{1k},\ldots,a_{Mk}), z\in R^{M(k+1)}$, для которых $\rho(z,z_0)=||z-z_0||_\infty\leqslant r$, где r — некоторое число, от h не зависящее. Пусть z — произвольная точка области $G:z\in G$. Обозначим через $a_i^*[U](a_0,a_1,\ldots,a_k)$ коэффициенты Чебышёва функции $U(x)=U(x_0+\alpha h), 0\leqslant \alpha\leqslant 1$, на $[x_0,x_0+h]$, вычисляемые через величины a_0,a_1,\ldots,a_k по описанному выше правилу, т.е. по формулам (6)–(9), в левых частях которых требуется y заменить на U, в правых частях $a_q^*[\Phi]$ поменять на a_q при $0\leqslant q\leqslant k$, а все остальные $a_q^*[\Phi], q>k$, заменить нулями. Обозначим также через $a_i^*[U'](a_0,a_1,\ldots,a_k)$ коэффициенты Чебышёва функции $U'(x)=U'(x_0+\alpha h), 0\leqslant \alpha\leqslant 1$, на $[x_0,x_0+h]$, вычисляемые аналогично через величины a_0,a_1,\ldots,a_k по формулам (4), (5).

Сформулируем следующее предложение, содержащее условия, при которых система уравнений (12), которую мы запишем в виде

$$a_i = \varphi_i(a_0, a_1, \dots, a_k), \quad i = 0, 1, \dots, k,$$
 (17)

имеет единственное решение.

Теорема. Пусть выполняются перечисленные ниже условия.

1) Для всех точек $z \in G(\rho(z,z_0) \leqslant r)$ и для всех h, меньших некоторого значения $h_1, 0 < h \leqslant h_1, h_1 \leqslant X$, линейные комбинации вида

$$U(x_0 + \alpha h) = \sum_{l=0}^{k+2} a_l^*[U](a_0, \dots, a_k) T_l^*(\alpha), \quad U'(x_0 + \alpha h) = \sum_{l=0}^{k+1} a_l^*[U'](a_0, \dots, a_k) T_l^*(\alpha), \quad 0 \leqslant \alpha \leqslant 1,$$

входящие в качестве второго и третьего аргументов функции f(x,y,y') в (10) и (11), принимают на отрезке $[x_0,x_0+h]$ значения, принадлежащие области D определения функции f(x,y,y').

- 2) При всех h, меньших некоторого значения h_2 , $0 < h \leqslant h_2$, норма $K = ||Q||_{\infty}$ матрицы Q, составленной из максимальных (в области изменения переменных) значений модулей частных производных $\left|\frac{\partial \varphi_{li}}{\partial a_{nm}}\right|$, где $l, n = 1, \ldots, M$ и $i, m = 0, \ldots, k$, меньше единицы.
- 3) При всех h, меньших некоторого значения h_3 , $0 < h \leqslant h_3$, мажсорантная оценка $O(h^{k+s})$ невязки ρ_i в (14) настолько мала, что выполняется неравенство

$$||\varphi(z_0) - z_0||_{\infty} < (1 - K)r, \quad \varphi(z_0) = (\varphi_0(z_0), \dots, \varphi_k(z_0)).$$

4) При всех h, меньших некоторого значения h_4 , $0 < h \leqslant h_4$, мажорантная оценка (15) или (16) погрешности начального приближения $a_i^{*(0)}[\tilde{P}_k]$, $i = 0, \ldots, k$, настолько мала, что выполняется неравенство

$$\rho(z_0, z^{(0)}) \leqslant r, \quad z^{(0)} = \left(a_0^{*(0)}[\tilde{P}_k], \dots, a_k^{*(0)}[\tilde{P}_k]\right), \quad \rho(z_0, z^{(0)}) = \max_i \left(\max_n \left|a_{ni}^*[\Phi] - a_{ni}^{*(0)}[\tilde{P}_k]\right|\right).$$

Тогда существует такое значение $h_0>0$, а именно: $h_0=\min\{h_1,h_2,h_3,h_4\}$, что при всех h, $0< h\leqslant h_0$, для задачи Коши (1), рассматриваемой на частичном отрезке $[x_0,x_0+h]$, система уравнений (17) относительно приближенных значений коэффициентов Чебышёва функции $\Phi(\alpha)$ имеет в области $G\{\rho(z,z_0)\leqslant r\}$ единственное решение $z=\left(a_0^*[\tilde{P}_k],\ldots,a_k^*[\tilde{P}_k]\right)$, которое можно получить методом простых итераций как предел последовательности

$$a_i^{*(\nu+1)}[\tilde{P}_k] = \varphi_i(a_0^{*(\nu)}[\tilde{P}_k], \dots, a_k^{*(\nu)}[\tilde{P}_k]), \quad i = 0, 1, \dots, k, \quad \nu = 0, 1, \dots,$$

исходя из начального приближения $a_0^{*(0)}[\tilde{P}_k],\,\ldots\,,a_k^{*(0)}[\tilde{P}_k].$

Доказательство. Так как $h \in (0, h_0]$, то все четыре условия теоремы выполняются одновременно при одном и том же значении h. К системе уравнений (17) относительно неизвестных приближенных значений коэффициентов Чебышёва функции $\Phi(\alpha)$ можно применить уточненный принцип сжатых отображений [6]. Действительно, в области $G\{\rho(z,z_0)\leqslant r\}$, где $z_0=\left(a_0^*[\Phi],\ldots,a_k^*[\Phi]\right)$ — фиксированная точка пространства $R^{M(k+1)}$, система функций $\varphi_i(a_0,\ldots,a_k), i=0,\ldots,k$, определена и удовлетворяет условию Липшица с константой K<1 (в силу первого и второго условий). В точке z_0 выполняется неравенство

$$\rho(\varphi(z_0), z_0) < (1 - K) r, \qquad \rho(\varphi(z_0), z_0) = ||\varphi(z_0) - z_0||_{\infty}$$

(в силу третьего условия). Начальное приближение $z^{(0)}$ принадлежит области G (в силу четвертого условия). Теперь заключение теоремы непосредственно следует из уточненного принципа сжатых отображений [6], применяемого как для исследования сходимости итерационных методов, так и для доказательства существования корня уравнения.

Эту теорему можно распространить на произвольный частичный сегмент из интервала $[x_0, x_0 + X]$ существования решения задачи Коши (1) заменой x_0 на x_n , а $x_0 + h$ на $x_n + h$, т.е. заменой сегмента $[x_0, x_1]$ на сегмент $[x_n, x_{n+1}]$.

Пример. Интегрируется нелинейное обыкновенное дифференциальное уравнение

$$y'' = 2yy', \quad y(0) = 0, \quad y'(0) = 1.$$
 (18)

Точное решение задачи (18) имеет вид $y(x)=\operatorname{tg} x$. Для данной задачи характерно то, что при возрастании x от 0 до $\pi/2$ интегральная кривая приближается к асимптоте $x=\pi/2$, параллельной оси Oy. На полусегменте $[0,\pi/2)$ решение задачи не ограничено. Поэтому задача Копи (18) имеет быстро растущее решение на отрезке $[0,x_f]$ при $x_f<\pi/2$ и достаточно близком к $\pi/2$ (решение имеет большую производную y').

Вычисляется решение задачи Коши (18) на нескольких интервалах интегрирования $[0, x_f]$, отличающихся только длиной: $x_f = 1, 5; 1, 56; 1, 57; 1, 5707$. Эта задача решается описанным выше методом рядов Чебышёва.

- 1) При $x_f = 1,5$ задавалось разбиение отрезка интегрирования $[0, x_f]$ на 15 элементарных (частичных) сегментов длиной h = 0,1; на каждом таком сегменте решение представлялось в виде (k+2)-й частичной суммы смещенного ряда Чебышёва при k = 20 (задача 1).
- 2) При $x_f=1,56$ отрезок интегрирования представлялся в виде объединения двух отрезков: $[0;1,56]=[0;1,5]\cup[1,5;1,56]$. Для первого промежутка [0;1,5] задавалось такое же разбиение на элементарные сегменты, как в задаче 1, и с тем же значением параметра k (k=20). Второй промежуток [1,5;1,56] разбивался на два элементарных сегмента длиной h=0,05 и h=0,01, и на каждом таком сегменте решение представлялось в виде (k+2)-й частичной суммы при k=30.
- 3) При $x_f=1,57$ отрезок интегрирования представлялся в виде объединения двух отрезков: $[0;1,57]=[0;1,5]\cup[1,5;1,57]$. Для первого промежутка [0;1,5] задавалось такое же разбиение на элементарные сегменты, как в задаче 1, и с тем же значением параметра k (k=20). Второй промежуток [1,5;1,57] разбивался на 12 частичных сегментов длиной h=0,006 (последний, двенадцатый, шаг нестандартный), и на каждом таком сегменте выбиралось значение параметра k=35, т.е. решение представлялось на каждом частичном сегменте в виде (k+2)-й частичной суммы при k=35.
- 4) При $x_f = 1,5707$ отрезок интегрирования представлялся в виде объединения двух отрезков: $[0;1,5707] = [0;1,5] \cup [1,5;1,5707]$. Для первого промежутка [0;1,5] задавалось такое же разбиение на элементарные сегменты, как в задаче 1, и с тем же значением параметра k (k=20). Второй промежуток [1,5;1,5707] разбивался на 15 частичных сегментов длиной h=0,005 (последний, пятнадцатый, шаг нестандартный), и на каждом таком сегменте значение параметра k полагалось равным 35.

Все вычисления проводились с 15–16 значащими цифрами.

В таблице представлены результаты счета.

	Метод рядов Чебышёва			Метод Штермера		
x_f	абсолютная (относительная) погрешность	N_h	N_f	абсолютная (относительная) погрешность	N_h	N_f
1	2	3	4	5	6	7
1,5	$-0.53 \times 10^{-14} -0.37 \times 10^{-15}$	15	7835	$0,97 \times 10^{-12} \\ 0,62 \times 10^{-13}$	7741	20779
1,56	$-0.19 \times 10^{-11} -0.20 \times 10^{-13}$	17	9157	$-0.54 \times 10^{-10} -0.59 \times 10^{-12}$	8627	22914
1,57	$-0.43 \times 10^{-9} \\ -0.34 \times 10^{-12}$	27	19187	$-0.15 \times 10^{-7} -0.12 \times 10^{-10}$	8930	23660
1,5707	$-0.14 \times 10^{-6} -0.13 \times 10^{-10}$	30	22025	$-0.22 \times 10^{-5} -0.21 \times 10^{-9}$	36154	95811

В первом столбце таблицы приводится значение x_f конца интегрирования $[0, x_f]$. Во втором столбце показаны полученные при интегрировании методом рядов Чебышёва абсолютная и (чуть ниже) относительная погрешности приближенного решения в конце x_f интервала интегрирования. В третьем и в четвертом столбцах приводятся (общее) число элементарных сегментов, на которые разбивался отрезок интегрирования $[0, x_f]$ в методе рядов (число шагов N_h), а также количество вычислений N_f правой части уравнения (18).

Задача Копи (18) решалась на всех четырех интервалах также и многошаговым методом Штермера пятого порядка точности типа предиктор–корректор с автоматическим выбором шага интегрирования. В пятом столбце таблицы показаны наилучшие абсолютная и (чуть ниже) относительная погрешности приближенного решения, достигнутые в конце интервала интегрирования $[0, x_f]$. В шестом и седьмом столбцах приведены число выполненных при этом шагов N_h , которое потребовалось для достижения такой точности, и количество обращений к правой части уравнения (18). Как следует из данного сравнения, приближенное решение задачи (18) в точке x_f методом рядов Чебышёва получено с большей точностью (на один-два порядка точнее) за значительно меньшее число шагов и существенно меньшее количество вычислений правой части уравнения, чем методом Штермера.

СПИСОК ЛИТЕРАТУРЫ

- 1. Залеткин C.Ф. Численное интегрирование обыкновенных дифференциальных уравнений с использованием ортогональных разложений // Математическое моделирование. 2010. 22, № 1. 69–85.
- 2. *Арушанян О.Б.*, *Волченскова Н.И.*, *Залеткин С.Ф.* О применении ортогональных разложений для приближенного интегрирования обыкновенных дифференциальных уравнений // Вестник Московского университета. Серия 1. Математика. Механика. 2010. № 4. 40–43.
- 3. *Арушанян О.Б., Волченскова Н.И., Залеткин С.Ф.* Вычисление коэффициентов разложения решения задачи Коши в ряд по многочленам Чебышёва // Вестник Московского университета. Серия 1. Математика. Механика. 2012 № 5. 24–30
- 4. *Арушанян О.Б., Залеткин С.Ф.* О применении формулы численного интегрирования Маркова в ортогональных разложениях // Вестник Московского университета. Серия 1. Математика. Механика. 2009. № 6. 18–22.
- 5. Залеткин С.Ф. Формула численного интегрирования Маркова с двумя фиксированными узлами и ее применение в ортогональных разложениях // Вычислительные методы и программирование. 2005. **6**, раздел 3. 1–17.
- 6. Березин И.С., Жидков Н.П. Методы вычислений. Т. 2. М.: Физматгиз, 1962.

Поступила в редакцию 21.03.2018

To the Orthogonal Expansion Theory of the Solution to the Cauchy Problem for Second-Order Ordinary Differential Equations

O. B. Arushanyan¹ and S. F. Zaletkin²

¹ Research Computing Center, Lomonosov Moscow State University; Leninskie Gory, Moscow, 119992, Russia; Dr. Sci., Professor, Head of Laboratory, e-mail: arush@srcc.msu.ru

² Research Computing Center, Lomonosov Moscow State University; Leninskie Gory, Moscow, 119992, Russia; Ph.D., Senior Scientist, e-mail: iraz@srcc.msu.ru

Received March 21, 2018

Abstract: A solvability theorem is proved for a nonlinear system of equations with respect to the approximate Chebyshev coefficients of the highest derivative in an ordinary differential equation. This theorem is a theoretical substantiation for the previously proposed approximate method of solving canonical systems of second-order ordinary differential equations using orthogonal expansions on the basis of Chebyshev polynomials of the first kind.

Keywords: ordinary differential equations, Cauchy problem, approximate analytical methods, numerical methods, orthogonal expansions, shifted Chebyshev series, Markov's quadrature formulas.

References

- 1. S. F. Zaletkin, "Numerical Integration of Ordinary Differential Equations Using Orthogonal Expansions," Mat. Model. **22** (1), 69–85 (2010).
- 2. O. B. Arushanyan, N. I. Volchenskova, and S. F. Zaletkin, "Application of Orthogonal Expansions for Approximate Integration of Ordinary Differential Equations," Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 40–43 (2010) [Moscow Univ. Math. Bull. 65 (4), 172–175 (2010)].
- 3. O. B. Arushanyan, N. I. Volchenskova, and S. F. Zaletkin, "Calculation of Expansion Coefficients of Series in Chebyshev Polynomials for a Solution to a Cauchy Problem," Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 5, 24–30 (2012) [Moscow Univ. Math. Bull. 67 (5–6), 211–216 (2012)].
- 4. O. B. Arushanyan and S. F. Zaletkin, "Application of Markov's Quadrature in Orthogonal Expansions," Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 18–22 (2009) [Moscow Univ. Math. Bull. 64 (6), 244–248 (2009)].
- 5. S. F. Zaletkin, "Markov's Formula with Two Fixed Nodes for Numerical Integration and Its Application in Orthogonal Expansions," Vychisl. Metody Programm. 6, 1–17 (2005).
- 6. I. S. Berezin and N. P. Zhidkov, *Computing Methods* (Fizmatgiz, Moscow, 1962; Pergamon, Oxford, 1965).