Taking account of the hysteresis effects in the calculation of eddy currents
Authors
-
I.M. Stupakov
-
M.E. Royak
-
N.S. Kondratyeva
-
A.V. Zelenskiy
-
N.A. Vinokurov
Keywords:
mathematical modeling
numerical modeling
electromagnetism
eddy currents
hysteresis
finite element method
boundary element method
Abstract
An approach that allows one to take into account the residual magnetization and the eddy currents simultaneously during the numerical simulation of electromagnetic processes is considered. The efficiency of the proposed approach is verified by comparing with the results of experimental measurements for a magnet with an O-shaped magnetic core.
Section
Section 1. Numerical methods and applications
References
- Yu. G. Soloveichik, M. E. Royak, and M. G. Persova, Finite Element Method for Scalar and Vector Problems (Novosib. Gos. Tekh. Univ., Novosibirsk, 2007) [in Russian].
- L. A. Neyman and V. Yu. Neyman, “Simulation of Processes in an Electromagnetic Vibration Converter with Power Loss in the Steel Magnetic Core,” Dokl. Tomsk Gos. Univ. Sistem Upravl. Radioelektron. 19 (1), 73-78 (2016).
- I. B. Podbereznaya, “Algorithms of Modeling of a Magnetic Hysteresis,” Izv. Vyssh. Uchebn. Zaved., Elektromekhan., No. 6, 5-13 (2015).
- I. B. Podbereznaya, “Complex Modeling Software Three-Dimensional Electromagnetic Fields by the Spatial Integral Equations for Electrical Problems,” Izv. Vyssh. Uchebn. Zaved., Tekhnich. Nauki, No. 1, 19-23 (2017).
- M. E. Royak, I. M. Stupakov, N. S. Kondratyeva, et al., “Application of a New Model of Residual Magnetization of Iron for Calculating the Deflecting Magnet of an Accelerator,” Pis’ma Zh. Tekh. Fiz. 43 (20), 28-36 (2017) [Tech. Phys. Lett. 43 (10), 924-927 (2017)].
- M. Royak, I. Stupakov, N. Kondratyeva, and E. Antokhin, “Finite Element Formulation with Coupled Vector-Scalar Magnetic Potentials for Eddy Current Problems,” in Proc. 11th Int. Forum on Strategic Technology (IFOST-2016), Novosibirsk, Russia, June 1-3, 2016 (IEEE Press, New York, 2016), pp. 456-460.
- I. M. Stupakov, M. E. Royak, and N. S. Kondratyeva, “The Method for Calculating Magnetic Field Induced by Current Coils,” in Proc. 13th Int. Scientific-Technical Conf. on Actual Problems of Electronics Instrument Engineering (APEIE-2016), Novosibirsk, Russia, October 3-6, 2016 (IEEE Press, New York, 2016), Vol. 2, pp. 347-350.
- V. F. Matyuk and A. A. Osipov, “The Mathematical Models of the Magnetization Curve and the Magnetic Hysteresis Loops. Part 1. Analysis of Models,” Nerazrush. Kontr. Diagn., No. 2, 3-35 (2011).
- I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications (Academic Press, New York, 2003).
- Zs. Szab{ó, I. Tugyi, Gy. Kádá, and J. F{ü}zi, “Identification Procedures for Scalar Preisach Model,” Physica B: Condens. Matter 343 (1-4), 142-147 (2004).
- P. A. Denisov, “Description of the Hysteresis Loop with the use of Explicit Expressions for the Jiles-Atherton Second-Level Model,” Izv. Vyssh. Uchebn. Zaved., Elektromekhan. 61 (1), 6-12 (2018).
- A. V. Chernyshev, “The Model of Magnetic Hysteresis of Jiles-Atherton and Its Modifications,” Kontrol Diagnost., No. 2, 55-60 (2016).
- Yu. V. Kulayev and P. A. Kurbatov, “Model of Magnetic Hysteresis Properties of Materials in the Application of a Constant and Variable Magnetic Fields,” Al’ternativ. Energet. Ekologiya, No. 22, 23-29 (2015).
- N. A. Vinokurov, O. A. Shevchenko, S. S. Serednyakov, et al., “Allowing for Hysteresis in the Calculation of Fields in the Elements of Accelerator Magnetic Systems,” Pis’ma Zh. Tekh. Fiz. 42 (13), 96-103 (2016) [Tech. Phys. Lett. 42 (7), 708-711 (2016)].