A two-dimensional hybrid model of an open plasma trap


  • E.A. Genrikh
  • M.A. Boronina


Vlasov equation
Maxwell’s equations
hybrid model
particle-in-cell method


A hybrid mathematical model of an axisymmetric plasma trap based on the kinetic description for the ion component of the plasma and the MHD approximation for the electronic component is presented. On the basis of the hybrid model, a two-dimensional algorithm is developed to study the dynamics of injected particles in the trap field. The motion of the ion component is calculated by the particle-in-cell method. Finite-difference schemes are used to calculate the magnetic field and the electron component of the plasma. On the basis of the developed algorithm, a program code is created to study the mechanisms of the self-consistent magnetic field structure formation.





Section 1. Numerical methods and applications

Author Biographies

E.A. Genrikh

M.A. Boronina


  1. A. A. Ivanov and V. V. Prikhodko, “Gas Dynamic Trap: Experimental Results and Future Prospects,” Usp. Fiz. Nauk 187 (5), 547-574 (2017) [Phys. Usp. 60 (5), 509-533 (2017)].
  2. A. D. Beklemishev, “Diamagnetic, “Bubble’’ Equilibria in Linear Traps,” Phys. Plasmas 23 (2016).
    doi 10.1063/1.4960129
  3. P. A. Bagryansky, T. D. Akhmetov, I. S. Chernoshtanov, et al., “Status of the Experiment on Magnetic Field Reversal at BINP,” AIP Conf. Proc. 1771 (2016).
    doi 10.1063/1.4964171
  4. K. V. Lotov, I. V. Timofeev, E. A. Mesyats, et al., “Note on Quantitatively Correct Simulations of the Kinetic Beam-Plasma Instability,” Phys. Plasmas 22 (2015).
    doi 10.1063/1.4907223
  5. M. A. Boronina and V. A. Vshivkov, “Parallel 3-D Particle-in-Cell Modelling of Charged Ultrarelativistic Beam Dynamics,” J. Plasma Phys. 81 (2015).
    doi 10.1017/S002237781500117
  6. A. S. Lipatov, The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas (Springer, Berlin, 2002).
  7. Yu. A. Berezin, G. I. Dudnikova, T. V. Liseykina, and M. P. Fedoruk, Modeling of Nonstationary Plasma Processes (Novosibirsk Gos. Univ., Novosibirsk, 2017) [in Russian].
  8. S. I. Braginskii, “Transport Processes in a Plasma,” in Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, pp. 205-311.
  9. Yu. N. Grigor’ev and V. A. Vshivkov, Particle-in-Cell Numerical Methods (Nauka, Novosibirsk, 2000) [in Russian].
  10. J. P. Boris, “Relativistic Plasma Simulation-Optimization of a Hybrid Code,” in Proc. Fourth Conference on Numerical Simulations of Plasmas, Washington D.C., USA, November 2-3, 1970 (National Research Lab., Washington D.C., 1970), pp. 3-67.