DOI: https://doi.org/10.26089/NumMet.v20r214

Comparison of a modified large-particle method with some high resolution schemes. One-dimensional test problems

Authors

  • D.V. Sadin
  • V.A. Davidchuk

Keywords:

large-particle method
high resolution
test problems
computational properties

Abstract

The paper presents a comparative analysis of the computational properties of a modified large-particle method on one-dimensional gas dynamics test problems in a wide range of flow parameters. The numerical results are compared with self-similar solutions and data obtained by high-resolution schemes from the second to the sixth order of approximation. It is shown that the presented scheme is numerically efficient and competitive.


Published

2019-05-05

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

D.V. Sadin

V.A. Davidchuk


References

  1. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009).
  2. A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 49 (3), 357-393 (1983).
  3. G.-S. Jiang and C.-W. Shu, “Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys. 126 (1), 202-228 (1996).
  4. B. Cockburn and C.-W. Shu, “Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems,” J. Sci. Comput. 16 (3), 173-261 (2001).
  5. M. N. Mikhailovskaya and B. V. Rogov, “Monotone Compact Running Schemes for Systems of Hyperbolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 52 (4), 672-695 (2012) [Comput. Math. Math. Phys. 52 (4), 578-600 (2012)].
  6. V. M. Goloviznin, “Balanced Characteristic Method for 1D Systems of Hyperbolic Conservation Laws in Eulerian Representation,” Mat. Model. 18 (11), 14-30 (2006).
  7. A. Kurganov and Y. Liu, “New Adaptive Artificial Viscosity Method for Hyperbolic Systems of Conservation Laws,” J. Comput. Phys. 231 (24), 8114-8132 (2012).
  8. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge Univ. Press, Cambridge, 2002).
  9. C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 1: Fundamentals of Computational Fluid Dynamics (Butterworth-Heinemann, Oxford, 2007).
  10. D. V. Sadin, “TVD Scheme for Stiff Problems of Wave Dynamics of Heterogeneous Media of Nonhyperbolic Nonconservative Type,” Zh. Vychisl. Mat. Mat. Fiz. 56 (12), 2098-2109 (2016) [Comput. Math. Math. Phys. 56 (12), 2068-2078 (2016)].
  11. D. V. Sadin, “Schemes with Customizable Dissipative Properties as Applied to Gas-Suspensions Flow Simulation,” Mat. Model. 29 (12), 89-104 (2017).
  12. R. B. Christensen, Godunov Methods on a Staggered Mesh - An Improved Artificial Viscosity , Preprint UCRL-JC-105269 (Lawrence Livermore Nat. Lab., Livermore, 1990).
  13. D. V. Sadin, “Application of Scheme with Customizable Dissipative Properties for Gas Flow Calculation with Interface Instability Evolution,” Nauch.-Tekhn. Vestn. Inform. Tekhnol. Mekhan. Optik. 18 (1), 153-157 (2018).
  14. S. Gottlieb and C.-W. Shu, “Total Variation Diminishing Runge-Kutta Schemes,” Math. Comput. 67 (221), 73-85 (1998).
  15. X. Liu, S. Zhang, H. Zhang, and C.-W. Shu, “A New Class of Central Compact Schemes with Spectral-Like Resolution II: Hybrid Weighted Nonlinear Schemes,” J. Comput. Phys. 284, 133-154 (2015).
  16. V. M. Goloviznin and S. A. Karabasov, CABARET Schemes for One-Dimensional Gas Dynamics Equations in Eulerian Variables , Preprint IBRAE-2001-15 (Nuclear Safety Inst., Moscow, 2001).
  17. R. Liska and B. Wendroff, Comparison of Several Difference Schemes on 1D and 2D Test Problems for Euler Equations , Technical Report LA-UR-01-6225 (Los Alamos Nat. Lab., Los Alamos, 2001).
  18. T. G. Elizarova and E. V. Shil’nikov, “Capabilities of a Quasi-Gasdynamic Algorithm as Applied to Inviscid Gas Flow Simulation,” Zh. Vychisl. Mat. Mat. Fiz. 49 (3), 549-566 (2009) [Comput. Math. Math. Phys. 49 (3), 532-548 (2009)].
  19. R. Liska and B. Wendroff, “Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations,” SIAM J. Sci. Comput. 25 (3), 995-1017 (2003).