Comparison of a modified large-particle method with some high resolution schemes. One-dimensional test problems


  • D.V. Sadin
  • V.A. Davidchuk


large-particle method
high resolution
test problems
computational properties


The paper presents a comparative analysis of the computational properties of a modified large-particle method on one-dimensional gas dynamics test problems in a wide range of flow parameters. The numerical results are compared with self-similar solutions and data obtained by high-resolution schemes from the second to the sixth order of approximation. It is shown that the presented scheme is numerically efficient and competitive.





Section 1. Numerical methods and applications

Author Biographies

D.V. Sadin

V.A. Davidchuk


  1. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009).
  2. A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 49 (3), 357-393 (1983).
  3. G.-S. Jiang and C.-W. Shu, “Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys. 126 (1), 202-228 (1996).
  4. B. Cockburn and C.-W. Shu, “Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems,” J. Sci. Comput. 16 (3), 173-261 (2001).
  5. M. N. Mikhailovskaya and B. V. Rogov, “Monotone Compact Running Schemes for Systems of Hyperbolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 52 (4), 672-695 (2012) [Comput. Math. Math. Phys. 52 (4), 578-600 (2012)].
  6. V. M. Goloviznin, “Balanced Characteristic Method for 1D Systems of Hyperbolic Conservation Laws in Eulerian Representation,” Mat. Model. 18 (11), 14-30 (2006).
  7. A. Kurganov and Y. Liu, “New Adaptive Artificial Viscosity Method for Hyperbolic Systems of Conservation Laws,” J. Comput. Phys. 231 (24), 8114-8132 (2012).
  8. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge Univ. Press, Cambridge, 2002).
  9. C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 1: Fundamentals of Computational Fluid Dynamics (Butterworth-Heinemann, Oxford, 2007).
  10. D. V. Sadin, “TVD Scheme for Stiff Problems of Wave Dynamics of Heterogeneous Media of Nonhyperbolic Nonconservative Type,” Zh. Vychisl. Mat. Mat. Fiz. 56 (12), 2098-2109 (2016) [Comput. Math. Math. Phys. 56 (12), 2068-2078 (2016)].
  11. D. V. Sadin, “Schemes with Customizable Dissipative Properties as Applied to Gas-Suspensions Flow Simulation,” Mat. Model. 29 (12), 89-104 (2017).
  12. R. B. Christensen, Godunov Methods on a Staggered Mesh - An Improved Artificial Viscosity , Preprint UCRL-JC-105269 (Lawrence Livermore Nat. Lab., Livermore, 1990).
  13. D. V. Sadin, “Application of Scheme with Customizable Dissipative Properties for Gas Flow Calculation with Interface Instability Evolution,” Nauch.-Tekhn. Vestn. Inform. Tekhnol. Mekhan. Optik. 18 (1), 153-157 (2018).
  14. S. Gottlieb and C.-W. Shu, “Total Variation Diminishing Runge-Kutta Schemes,” Math. Comput. 67 (221), 73-85 (1998).
  15. X. Liu, S. Zhang, H. Zhang, and C.-W. Shu, “A New Class of Central Compact Schemes with Spectral-Like Resolution II: Hybrid Weighted Nonlinear Schemes,” J. Comput. Phys. 284, 133-154 (2015).
  16. V. M. Goloviznin and S. A. Karabasov, CABARET Schemes for One-Dimensional Gas Dynamics Equations in Eulerian Variables , Preprint IBRAE-2001-15 (Nuclear Safety Inst., Moscow, 2001).
  17. R. Liska and B. Wendroff, Comparison of Several Difference Schemes on 1D and 2D Test Problems for Euler Equations , Technical Report LA-UR-01-6225 (Los Alamos Nat. Lab., Los Alamos, 2001).
  18. T. G. Elizarova and E. V. Shil’nikov, “Capabilities of a Quasi-Gasdynamic Algorithm as Applied to Inviscid Gas Flow Simulation,” Zh. Vychisl. Mat. Mat. Fiz. 49 (3), 549-566 (2009) [Comput. Math. Math. Phys. 49 (3), 532-548 (2009)].
  19. R. Liska and B. Wendroff, “Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations,” SIAM J. Sci. Comput. 25 (3), 995-1017 (2003).