Numerical Methods for Black Box Software


  • S.I. Martynenko


parallel and high performance computing
boundary value problems
multigrid methods
black box software


A number of requirements are formulated to the numerical algorithms for black box software intended for mathematical modeling in continuum mechanics. An analysis of applied properties of the classical multigrid methods and robust multigrid technique in the framework of "robustness-efficiency-parallelism"problem is performed. It is shown that a close-to-optimal complexit y with the least number of problem-dependent components and high parallel efficiency can be achieved with the robust multigrid technique on globally structured grids. Application of unstructured grids requires the accurate definition of two problem-dependent components (intergrid operators) that strongly affect on the complexity of an algorithm.





Section 1. Numerical methods and applications

Author Biography

S.I. Martynenko

Central Institute of Aviation Motors
• Senior Researcher


  1. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Binom, Moscow, 2007) [in Russian].
  2. V. A. Vasilev and M. A. Kalmykova, “Analysis and Selection of Software Products for Instrument Engineering,” Sovremen. Tekhnika Tekhnolog. (2013). . Cited May 7, 2019.
  3. M. P. Galanin and E. B. Savenkov, Procedures of Numerical Analysis of Mathematical Models (Bauman Gos. Tekh. Univ., Moscow, 2010) [in Russian].
  4. V. P. Il’in, Mathematical Modeling, Part I: Continuous and Discrete Models (Ross. Akad. Nauk, Novosibirsk, 2017) [in Russian].
  5. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].
  6. S. I. Martynenko, “Robust Multigrid Technique for Solving Partial Differential Equations on Structured Grids,” Vychisl. Metody Programm. 1, 83-102 (2000).
  7. S. I. Martynenko, Multigrid Technology: Theory and Applications (Fizmatlit, Moscow, 2015) [in Russian].
  8. G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1989; Springer, New York, 1982).
  9. M. A. Ol’shanskii, Lectures and Exercises on Multigrid Methods (Fizmatlit, Moscow, 2005) [in Russian].
  10. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].
  11. A. A. Samarskii and A. P. Mikhailov, Mathematical Modeling: Ideas, Methods, Examples (Fizmatlit, Moscow, 2002) [in Russian].
  12. P. D. Toktaliev, S. I. Martynenko, L. S. Yanovskiy, et al., “Features of Model Hydrocarbon Fuel Oxidation for Channel Flow in the Presence of Electrostatic Field,” Izv. Ross. Akad. Nauk, Ser. Khimich., No. 8, 2011-2017 (2016) [Russ. Chem. Bull. 65 (8), 2011-2017 (2016)].
  13. L. I. Turchak, Fundamentals of Numerical Methods (Nauka, Moscow, 1987) [in Russian].
  14. R. P. Fedorenko, “A Relaxation Method for Solving Elliptic Difference Equations,” Zh. Vychisl. Mat. Mat. Fiz. 1 (5), 922-927 (1961) [USSR Comput. Math. Math. Phys. 1 (4), 1092-1096 (1962)].
  15. J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, 1983; Mir, Moscow, 1988).
  16. V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation (SIAM Press, Philadelphia, 2015).
  17. W. Hackbusch, Multi-Grid Methods and Applications (Springer, Berlin, 1985).
  18. W. Hackbusch, “Robust Multi-Grid Methods, the Frequency Decomposition Multi-Grid algorithm,” in Notes on Numerical Fluid Mechanics (Viewig, Braunschweig, 1989), Vol. 123, pp. 96-104.
  19. L. A. Hageman and D. M. Young, Applied Iterative Methods (Academic Press, New York, 1981; Mir, Moscow, 1986).
  20. S. I. Martynenko, The Robust Multigrid Technique: For Black-Box Software (De Gruyter, Berlin, 2017).
  21. J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems (Springer, New York, 1988; Mir, Moscow, 1991).
  22. Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, Philadelphia, 2003; Mosk. Gos. Univ., Moscow, 2013).
  23. U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid (Academic Press, London, 2001).
  24. S. P. Vanka, “Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables,” J. Comput. Phys. 65 (1), 138-158 (1986).
  25. P. Wesseling, An Introduction to Multigrid Methods (Wiley, Chichester, 1992).
  26. J. Xu, “The Auxiliary Space Method and Optimal Multigrid Preconditioning Techniques for Unstructured Grids,” Computing 56, 215-235 (1996).