Inverse problems of experimental data interpretation in 3D ultrasound tomography

Authors

  • A.V. Goncharsky Lomonosov Moscow State University
  • V.A. Kubyshkin Lomonosov Moscow State University
  • S.Yu. Romanov Lomonosov Moscow State University
  • S.Yu. Seryozhnikov Lomonosov Moscow State University

DOI:

https://doi.org/10.26089/NumMet.v20r323

Keywords:

ultrasound tomography, inverse problems, medical imaging, GPU cluster

Abstract

The inverse problem of 3D ultrasound tomography is considered in this paper as a nonlinear coefficient inverse problem for a hyperbolic equation. The employed mathematical model accurately describes the effects of ultrasound wave diffraction and absorption in inhomogeneous media. The velocity of acoustic waves inside the test sample is reconstructed as an unknown function of three spatial coordinates. The number of unknowns in the nonlinear inverse problem reaches 50 million. The developed iterative algorithms for solving the inverse problem are designed for GPU clusters. The main result of this study is testing the developed algorithms on experimental data. The experiments were carried out using a 3D ultrasound tomographic setup developed at Lomonosov Moscow State University. Acoustic properties of the test samples were close to those of human soft tissues. The volume of data collected in experiments is up to 3 GB. Experimental results show the efficiency of the proposed algorithms and confirm that the mathematical model is adequate to reality. The proposed algorithms were tested on the GPU partition of Lomonosov-2 supercomputer.

Author Biographies

A.V. Goncharsky

Lomonosov Moscow State University
• Head of Laboratory

V.A. Kubyshkin

Lomonosov Moscow State University
• Head of Department

S.Yu. Romanov

Lomonosov Moscow State University
• Leading Researcher

S.Yu. Seryozhnikov

References

  1. Kak A. C., Slaney M. Principles of computerized tomographic imaging. New York: IEEE Press, 1988.
  2. Sak M., Duric N., Littrup P., et al. Using speed of sound imaging to characterize breast density // Ultrasound in Medicine and Biology. 2017. Vol. 43, N 1. 91-103.
  3. Гончарский А.В., Романов С.Ю., Серёжников С.Ю. Обратные задачи послойной ультразвуковой томографии с данными на цилиндрической поверхности // Вычислительные методы и программирование. 2017. 18. 267-276.
  4. Гончарский А.В., Романов С.Ю., Серёжников С.Ю. Низкочастотная трехмерная ультразвуковая томография // Доклады Российской Академии наук. 2016. 468, № 3. 268-271.
  5. Jirik R., Peterlik I., Ruiter N., et al. Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2012. Vol. 59, N 2. 254-264.
  6. Wiskin J., Borup D. T., Johnson S. A., Berggren M. Non-linear inverse scattering: high resolution quantitative breast tissue tomography // The Journal of the Acoustical Society of America. 2012. Vol. 131, N 5. 3802-3813.
  7. Буров В.А., Зотов Д.И., Румянцева О.Д. Восстановление пространственных распределений скорости звука и поглощения в фантомах мягких биотканей по экспериментальным данным ультразвукового томографирования // Акуст. журн. 2015. 61, № 2. 254-273.
  8. Natterer F. Incomplete data problems in wave equation imaging // Inverse Problems and Imaging. 2010. Vol. 4, N 4. 685-691.
  9. Beilina L., Klibanov M.V. Approximate global convergence and adaptivity for coefficient inverse problems. New York: Springer, 2012.
  10. Goncharsky A.V., Romanov S.Y., Seryozhnikov S.Y. A computer simulation study of soft tissue characterization using low-frequency ultrasonic tomography // Ultrasonics. 2016. Vol. 67. 136-150.
  11. Goncharsky A.V., Romanov S.Y. A method of solving the coefficient inverse problems of wave tomography // Computers and Mathematics with Applications. 2019. Vol. 77, N 4. 967-980.
  12. Romanov S.Y. Supercomputer simulation study of the convergence of iterative methods for solving inverse problems of 3D acoustic tomography with the data on a cylindrical surface // Communications in Computer and Information Science. Vol. 965. Cham: Springer, 2019. 388-400.
  13. Гончарский А.В., Романов С.Ю., Серёжников С.Ю. Низкочастотная ультразвуковая томография: математические методы и эксперимент // Вестник Московского университета. Серия 3: Физика, астрономия. 2019. № 1. 40-47.
  14. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V. "Lomonosov": supercomputing at Moscow State University // Contemporary High Performance Computing: From Petascale toward Exascale. Boca Raton: CRC Press, 2013. 283-308.
  15. Goncharsky A.V., Romanov S.Y. Inverse problems of ultrasound tomography in models with attenuation // Physics in Medicine and Biology. 2014. Vol. 59, N 8. 1979-2004.
  16. Goncharsky A.V., Romanov S.Y. Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation // Inverse Problems. 2017. Vol. 33, N 2. doi: 10.1088/1361-6420/33/2/025003.
  17. Bakushinsky A., Goncharsky A. Ill-posed problems: theory and applications. Dordrecht: Kluwer, 1994.
  18. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. М.: Наука, 1990.
  19. Goncharsky A.V., Romanov S.Y. Supercomputer technologies in inverse problems of ultrasound tomography // Inverse Problems. 2013. Vol. 29, N 7. doi:10.1088/0266-5611/29/7/075004.
  20. Engquist B., Majda A. Absorbing boundary conditions for the numerical simulation of waves // Mathematics of Computation. 1977. Vol. 31. 629-651.
  21. Goncharsky A., Seryozhnikov S. The architecture of specialized GPU clusters used for solving the inverse problems of 3D low-frequency ultrasonic tomography // Communications in Computer and Information Science. Vol. 793. Cham: Springer, 2017. 363-375.
  22. Mu S.-Y., Chang H.-W. Dispersion and local-error analysis of compact LFE-27 formula for obtaining sixth-order accurate numerical solutions of 3D Helmholtz equation // Progress in Electromagnetics Research. 2013. Vol. 143. 285-314.
  23. Romanov S.Y. Optimization of numerical algorithms for solving inverse problems of ultrasonic tomography on a supercomputer // Communications in Computer and Information Science. Vol. 793. Cham: Springer, 2017. 67-79.
  24. Гончарский А.В., Романов С.Ю., Серёжников С.Ю. Низкочастотная 3D ультразвуковая томография: двухчастотный метод // Вычислительные методы и программирование. 2018. 19. 479-495.
  25. Goncharsky A.V., Romanov S.Y., Seryozhnikov S.Y. Inverse problems of 3D ultrasonic tomography with complete and incomplete range data // Wave Motion. 2014. Vol. 51, N 3. 389-404.
  26. Fink M. Time reversal in acoustics // Contemporary Physics. 1996. Vol. 37, N 2. 95-109.
  27. Гончарский А.В., Романов С.Ю., Серёжников С.Ю. О проблеме выбора начального приближения в обратных задачах ультразвуковой томографии // Вычислительные методы и программирование. 2017. 18. 312-321.
  28. Goncharsky A., Seryozhnikov S. Supercomputer technology for ultrasound tomographic image reconstruction: mathematical methods and experimental results // Communications in Computer and Information Science. Vol. 965. Cham: Springer, 2019. 401-413.

Published

2019-07-03

How to Cite

Гончарский А.В., Кубышкин В.А., Романов С.Ю., Серёжников С.Ю. Inverse Problems of Experimental Data Interpretation in 3D Ultrasound Tomography // Numerical methods and programming. 2019. 20. 254-269. doi 10.26089/NumMet.v20r323

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 3 > >>