DOI: https://doi.org/10.26089/NumMet.v20r325

A difference scheme with the optimal weight for the diffusion-convection equation

Authors

  • A.I. Sukhinov
  • A.E. Chistyakov
  • V.V. Sidoryakina
  • S.V. Protsenko

Keywords:

diffusion-convection equation
difference scheme with weights
optimal value of the weight parameter
approximation error
solution accuracy

Abstract

A difference scheme with weights for a homogeneous spatially one-dimensional diffusion-convection equation is studied. An analysis of the approximation error for the difference scheme as a time step function is performed on the basis of the expansion of the solution and approximation error in a trigonometric basis. An algorithm is proposed to find the optimal weight value that ensures the minimum approximation error of the solution to an initial boundary value problem for given values of the time grid steps. A better accuracy of the constructed scheme with the optimal weight compared to the explicit scheme as well as the efficiency of the algorithm for finding the optimal weight value is shown using a test problem.


Published

2019-08-05

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

A.I. Sukhinov

A.E. Chistyakov

V.V. Sidoryakina

A.P. Chekhov Taganrog Institute
• Associate Professor

S.V. Protsenko


References

  1. K. A. Podgornyi and A. V. Leonov, “Modelling of Suspended Matter Distribution in Marine Coastal Areas. 1. Description of the SM-model,” Okeanologich. Issled. 45 (1), 109-141 (2017).
  2. Y. A. Kriksin and V. F. Tishkin, “Hybrid Approach to Solve Single-Dimensional Gas Dynamics Equations,” Mat. Model. 30 (8), 17-31 (2018) [Math. Models Comput. Simul. 11 (2), 256-265 (2019)].
  3. K. W. Morton and R. B. Kellogg, Numerical Solution of Convection-Diffusion Problems (Chapman and Hall, London, 1996).
  4. P. N. Vabishchevich and P. E. Zakharov, “Alternating Triangular Schemes for Convection-Diffusion Problems,” Zh. Vychisl. Mat. Mat. Fiz. 56 (4), 587-604 (2016) [Comput. Math. Math. Phys. 56 (4), 576-592 (2016)].
  5. W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (Springer, Berlin, 2003).
    doi 10.1007/978-3-662-09017-6
  6. V. V. Sidoryakina and A. I. Sukhinov, “Well-Posedness Analysis and Numerical Implementation of a Linearized Two-Dimensional Bottom Sediment Transport Problem,” Zh. Vychisl. Mat. Mat. Fiz. 57 (6), 985-1002 (2017) [Comput. Math. Math. Phys. 57 (6), 978-994 (2017)].
  7. A. I. Sukhinov, E. A. Protsenko, A. E. Chistyakov, and S. A. Shreter, “Comparison of Computational Efficiency of Explicit and Implicit Schemes for the Sediment Transport Problem in Coastal Zones,” Vychisl. Metody Programm. 16, 328-338 (2015).
  8. A. I. Sukhinov, A. E. Chistyakov, and V. V. Sidoryakina, “Parallel Solution of Sediment and Suspension Transportation Problems on the Basis of Explicit Schemes,” in Communications in Computer and Information Science (Springer, Cham, 2018), Vol. 910, pp. 306-321.
  9. G. I. Marchuk, V. P. Dymnikov, and V. B. Zalesnyi, Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods of Their Implementation (Gidrometeoizdat, Leningrad, 1987) [in Russian].
  10. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].
  11. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Convection-Diffusion Problems (Editorial, Moscow, 2004) [in Russian].
  12. V. T. Pinkevich, “The Order of the Remainder Term of Fourier Series of Functions Which are Differentiable in the Sense of Weyl,” Izv. Akad. Nauk SSSR. Ser. Matem. 4 (6), 521-528 (1940).
  13. A. I. Sukhinov, A. E. Chistyakov, and A. V. Shishenya, “Error Estimate for Diffusion Equations Solved by Schemes with Weights,” Mat. Model. 25 (11), 53-64 (2013) [Math. Models Comput. Simul. 6 (3), 324-331 (2014)].
  14. A. I. Sukhinov, A. E. Chistyakov, and M. V. Yakobovskii, “Accuracy of the Numerical Solution of the Equations of Diffusion-Convection Using the Difference Schemes of Second and Fourth Order Approximation Error,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 5 (1), 47-62 (2016).
  15. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 2004; Dover, New York, 2011).
  16. N. M. Afanas’eva, A. G. Churbanov, and P. N. Vabishchevich, “Unconditionally Monotone Schemes for Unsteady Convection-Diffusion Problems,” Comput. Methods Appl. Math. 13 (2), 185-205 (2013).
  17. T. M. Sutton and B. N. Aviles, “Diffusion Theory Methods for Spatial Kinetics Calculations,” Prog. Nucl. Energ. 30 (2), 119-182 (1996).
    doi 10.1016/0149-1970(95)00082-U
  18. A. I. Sukhinov and A. A. Sukhinov, “Reconstruction of 2001 Ecological Disaster in the Azov Sea on the Basis of Precise Hydrophysics Models,” in Parallel Computational Fluid Dynamics 2004: Multidisciplinary Applications (Elsevier, Amsterdam, 2005), pp. 231-238.