Numerical simulation of detonation wave propagation using a two-stage kinetics model of chemical reactions in the shock-attached frame

Authors

  • Ya.E. Poroshyna Moscow Institute of Physics and Technology

DOI:

https://doi.org/10.26089/NumMet.v20r326

Keywords:

mathematical modeling, detonation wave, shock-attached frame, two-stage kinetics model

Abstract

For the numerical study of a pulsating detonation wave using a two-stage kinetics model of chemical reactions in the shock-attached frame, a new numerical algorithm is proposed. For the four known modes of detonation wave propagation, the effect of the approximation order of the proposed numerical algorithm, the length of the computational domain, the grid resolution, and the type of the far-field boundary condition on the simulation results is analyzed in the framework of this model. The character of pulsations is compared with the numerical results obtained by a number of other authors.

Author Biography

Ya.E. Poroshyna

References

  1. Зельдович Я.Б. К теории распространения детонации в газообразных системах // Журнал экспериментальной и технической физики. 1940. 10, № 5. 542-568.
  2. Von Neumann J. Theory of detonation waves // Collected Works. Vol. 6. London: Pergamon, 1963. 203-218.
  3. Doring W. Uber den Detonationsvorgang in Gasen [On detonation processes in gases] // Annalen der Physik. 1943. Vol. 43. 421-436.
  4. Erpenbeck J.J. Stability of steady-state equilibrium detonations // Physics of Fluids. 1962. Vol. 5, N 5. 604-614.
  5. Fickett W., Wood W. Flow calculations for pulsating one-dimensional detonations // Physics of Fluids. 1966. Vol. 9, N 5. 903-916.
  6. Korobeinikov V.P., Levin V.A., Markov V.V., Chernyi G.G. Propagation of blast waves in a combustible gas // Acta Astronautica. 1972. Vol. 17, N 5-6. 529-537.
  7. Седов Л.И., Коробейников В.П., Марков В.В. Теория распространения взрывных волн // Труды Математического института АН СССР. 1986. 175. 178-216.
  8. Short M., Sharpe G.J. Pulsating instability of detonations with a two-step chain-branching reaction model: theory and numerics // Combustion Theory and Modelling. 2003. Vol. 7, N 2. 401-416.
  9. McVey J.B., Toong T.Y. Mechanism of instabilities of exothermic hypersonic blunt-body flows // Combustion Science and Technology. 1971. Vol. 3, N 2. 63-76.
  10. Fickett W., Davis W.C. Detonation: theory and experiment. Berkeley: University of California Press, 1979.
  11. Ng H.D., Radulescu M.I., Higgins A.J., Nikiforakis N., Lee J.H. S. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics // Combustion Theory and Modelling. 2005. Vol. 9, N 3. 385-401.
  12. Leung C., Radulescu M.I., Sharpe G.J. Characteristics analysis of the one-dimensional pulsating dynamics of chain-branching detonations // Physics of Fluids. 2010. Vol. 22. doi: 10.1063/1.3520188.
  13. Kasimov A.R., Stewart D.S. On the dynamics of self-sustained one-dimensional detonations: A numerical study in the shock-attached frame // Physics of Fluids. 2004. Vol. 16, N 10. 3566-3578.
  14. Холодов А.С. О построении разностных схем с положительной аппроксимацией для уравнений гиперболического типа // Журнал вычислительной математики и математической физики. 1978. 18, № 6. 1476-1492.
  15. Лопато А.И., Уткин П.С. Детальное математическое моделирование пульсирующей детонационной волны в системе координат, связанной с лидирующим скачком // Журнал вычислительной математики и математической физики. 2016. 56, № 5. 856-868.
  16. Lopato A.I., Utkin P.S. Toward second-order algorithm for the pulsating detonation wave modeling in the shock-attached frame // Combustion Science and Technology. 2016. Vol. 188, N 11-12. 1844-1856.
  17. Лопато А.И., Уткин П.С. О двух подходах к математическому моделированию детонационной волны // Математическое моделирование. 2016. 28, № 2. 133-145.
  18. Daimon Y., Matsuo A. Unsteady features on one-dimensional hydrogen-air detonations // Physics of Fluids. 2007. Vol. 19. doi: 10.1063/1.2801478.
  19. Short M., Wang D. On the dynamics of pulsating detonations // Combustion Theory and Modelling. 2001. Vol. 5, N 3. 343-352.

Published

2019-08-12

How to Cite

Порошина Я.Э. Numerical Simulation of Detonation Wave Propagation Using a Two-Stage Kinetics Model of Chemical Reactions in the Shock-Attached Frame // Numerical methods and programming. 2019. 20. 293-308. doi 10.26089/NumMet.v20r326

Issue

Section

Section 1. Numerical methods and applications