A Cartesian grid method for the three-dimensional numerical simulation of shock wave propagation in complex-shape domains with moving boundaries

Authors

  • V.V. Elesin Institute for Design Automation of RAS (IAP RAS)
  • D.A. Sidorenko Institute for Design Automation of RAS (IAP RAS)
  • P.S. Utkin Institute for Design Automation of RAS (IAP RAS)

DOI:

https://doi.org/10.26089/NumMet.v20r327

Keywords:

mathematical modeling, three-dimensional Euler equations, Cartesian grid method, shock wave

Abstract

This paper is devoted to the development and quantitative estimation of a numerical algorithm based on the Cartesian grid method for the three-dimensional mathematical simulation of shock wave propagation in domains of complex varying shapes. A detailed description of the numerical algorithm is presented. Its key element is the specification of numerical fluxes through the edges that are common for the inner regular cells of the computational domain and the outer cells intersected by the boundaries of the bodies. The efficiency of the algorithm is shown by comparing the numerical and experimental data in the problems of interaction of a shock wave with a fixed sphere and a moving particle.

Author Biographies

V.V. Elesin

D.A. Sidorenko

P.S. Utkin

References

  1. Дьяченко С.В. Разработка пакета программ для трехмерного численного моделирования многофазных многокомпонентных течений в атомной энергетике // Вычислительные методы и программирование. 2014. 15. 162-182.
  2. Глазунов А.В. Численное моделирование турбулентности и переноса мелкодисперсной примеси в городских каньонах // Вычислительные методы и программирование. 2018. 19. 17-37.
  3. Волков К.Н., Емельянов В.Н., Тетерина И.В. Визуализация результатов численного моделирования течений с частицами, полученных при помощи лагранжевых подходов к описанию дисперсной фазы // Вычислительные методы и программирование. 2018. 19. 522-539.
  4. Федоров А.А. Визуализация капель жидкости в FlowVision // Вычислительные методы и программирование. 2018. 19. 1-8.
  5. Бедарев И.А., Федоров А.В. Прямое моделирование релаксации нескольких частиц за проходящими ударными волнами // Инженерно-физический журнал. 2017. 90, № 2. 450-457.
  6. Sen O., Gaul N.J., Choi K.K., Jacobs G., Udaykumar H.S. Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles // Journal of Computational Physics. 2017. Vol. 336. 235-260.
  7. Годунов С.К., Забродин А.В., Иванов М.Я., Крайко А.Н., Прокопов Г.П. Численное решение многомерных задач газовой динамики. М.: Наука, 1976.
  8. Mittal R., Iaccarino G. Immersed boundary methods // Annual Review of Fluid Mechanics. 2005. Vol. 37. 239-261.
  9. Bennett W.P., Nikiforakis N., Klein R. A moving boundary flux stabilization method for Cartesian cut-cell grids using directional operator splitting // Journal of Computational Physics. 2018. Vol. 368. 333-358.
  10. Pember R.B., Bell J.B., Colella P., Curtchfield W.Y., Welcome M.L. An adaptive Cartesian grid method for unsteady compressible flow in irregular regions // Journal of Computational Physics. 1995. Vol. 120, N 2. 278-304.
  11. Colella P., Graves D.T., Keen B.J., Modiano D. A Cartesian grid embedded boundary method for hyperbolic conservation laws // Journal of Computational Physics. 2006. Vol. 211, N 1. 347-366.
  12. Hu X.Y., Khoo B.C., Adams N.A., Huang F.L. A conservative interface method for compressible flows // Journal of Computational Physics. 2006. Vol. 219, N 2. 553-578.
  13. Schneiders L., Hartmann D., Meinke M., Schroder W. An accurate moving boundary formulation in cut-cell methods // Journal of Computational Physics. 2013. Vol. 235. 786-809.
  14. Colella P. Multidimensional upwind methods for hyperbolic conservation laws // Journal of Computational Physics. 1990. Vol. 87, Issue 1. 171-200.
  15. Klein R., Bates K.R., Nikiforakis N. Well-balanced compressible cut-cell simulation of atmospheric flow // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2009. Vol. 367. 4559-4575.
  16. Schneiders L., Gunther C., Meinke M., Schroder W. An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows // Journal of Computational Physics. 2016. Vol. 311. 62-86.
  17. Clarke D.K., Hassan H.A., Salas M.D. Euler calculations for multielement airfoils using Cartesian grids // AIAA Journal. 1986. Vol. 24, N 3. 353-358.
  18. Quirk J.J. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies // Computers and Fluids. 1994. Vol. 23, N 1. 125-142.
  19. Berger M.J., Helzel C., LeVeque R.J. h-box methods for the approximation of hyperbolic conservation laws on irregular grids // SIAM Journal on Numerical Analysis. 2003. Vol. 41, N 3. 893-918.
  20. Ingram D.M., Causon D.M., Mingham C.G. Developments in Cartesian cut cell methods // Mathematics and Computers in Simulations. 2003. Vol. 61, Issues 3-6. 561-572.
  21. Xu S., Aslam T., Stewart D.S. High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries // Combustion Theory and Modelling. 1997. Vol. 1, N 1. 113-142.
  22. Yang G., Causon D.M., Ingram D.M., Saunders R., Batten P. A Cartesian cut cell method for compressible flows. Part A: Static body problems // Aeronautical Journal. 1997. Vol. 101, Issue 1002. 47-56.
  23. Barton P.T., Obadia B., Drikakis D. A conservative level-set based method for compressible solid/fluid problems on fixed grids // Journal of Computational Physics. 2011. Vol. 230, N 21. 7867-7890.
  24. Hartmann D., Meinke M., Schroder W. A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids // Computer Methods in Applied Mechanics and Engineering. 2011. Vol. 200, N 9-12. 1038-1052.
  25. Pogorelov A., Meinke M., Schroder W. Cut-cell method based large-eddy simulation of tip-leakage flow // Physics of Fluids. 2015. Vol. 27, N 7. doi 10.1063/1.4926515.
  26. Pogorelov A., Meinke M., Schroder W. Effects of tip-gap width on the flow field in an axial fan // International Journal of Heat and Fluid Flow. 2016. Vol. 61. 466-481.
  27. Pogorelov A., Schneiders L., Meinke M., Schroder W. An adaptive Cartesian mesh based method to simulate turbulent flows of multiple rotating surfaces // Flow, Turbulence and Combustion. 2018. Vol. 100, Issue 1. 19-38.
  28. Helzel C., Berger M.J., LeVeque R.J. A high-resolution rotated grid method for conservation laws with embedded geometries // SIAM Journal on Scientific Computing. 2005. Vol. 26, N 3. 785-809.
  29. Berger M., Helzel C. A simplified h-box method for embedded boundary grids // SIAM Journal on Scientific Computing. 2012. Vol. 34, N 2. A861-A888.
  30. Сидоренко Д.А., Уткин П.С. Метод декартовых сеток для численного моделирования распространения ударных волн в областях сложной формы // Вычислительные методы и программирование. 2016. 17. 353-364.
  31. Сидоренко Д.А., Уткин П.С. Двумерное газодинамическое моделирование взаимодействия ударной волны с засыпками гранулированных сред // Химическая физика. 2018. 37, № 9. 43-49.
  32. Сидоренко Д.А., Уткин П.С. Численное моделирование релаксации тела за проходящей ударной волной // Математическое моделирование. 2018. 30, № 11. 91-104.
  33. Chertock A., Kurganov A. A simple Eulerian finite-volume method for compressible fluids in domains with moving boundaries // Communications in Mathematical Sciences. 2008. Vol. 6, N 3. 531-556.
  34. Steger J.L., Warming R.F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods // Journal of Computational Physics. 1981. Vol. 40, Issue 2. 263-293.
  35. Pandolfi M., DAmbrosio D. Numerical instabilities in upwind methods: analysis and cures for the "carbuncle" phenomenon // Journal of Computational Physics. 2001. Vol. 166, Issue 2. 271-301.
  36. Tanno H., Itoh K., Saito T., Abe A., Takayama K. Interaction of a shock with a sphere suspended in a vertical shock tube // Shock Waves. 2003. Vol. 13, N 3. 191-200.
  37. Boiko V.M., Fedorov A.V., Fomin V.M., Papyrin A.N., Soloukhin R.I. Ignition of small particles behind shock waves // Shock Waves, Explosions and Detonations. New York: American Inst. of Aeronautics and Astronautics, 1983. 71-87.

Published

2019-08-19

How to Cite

Елесин В.В., Сидоренко Д.А., Уткин П.С. A Cartesian Grid Method for the Three-Dimensional Numerical Simulation of Shock Wave Propagation in Complex-Shape Domains With Moving Boundaries // Numerical methods and programming. 2019. 20. 309-322. doi 10.26089/NumMet.v20r327

Issue

Section

Section 1. Numerical methods and applications