The practice of conducting performance analysis of supercomputer applications

Authors

DOI:

https://doi.org/10.26089/NumMet.v20r330

Keywords:

high-performance computing, supercomputers, efficiency analysis, graphics accelerators, liquid crystals, elastic continuum theory

Abstract

A method for the efficiency analysis and optimization of supercomputer applications applied earlier in practice to study jobs of a user on the Lomonosov-2 supercomputer is proposed. This method involves various stages of the jobs research, starting from studying the general behavior of all user launches on a supercomputer and ending with a detailed study and optimization of the source code of a selected program. The paper describes the general stages of the analysis that were carried out in practice, shows performance metrics that should be paid attention to when performing such an analysis, and shows also some specific examples of the job behavior and the effect of optimization carried out for the task of calculating liquid crystal droplets.

Author Biographies

I.V. Afanasyev

V.V. Voevodin

V.Yu. Rudyak

A.V. Emelyanenko

References

  1. Voevodin V., Voevodin V. Efficiency of exascale supercomputer centers and supercomputing education // High Performance Computer Applications. Vol. 595. Cham: Springer, 2016. 14-23.
  2. Vetter J., Chambreau C. MpiP: Lightweight, scalable MPI profiling. http://mpip.sourceforge.net.
  3. Intel VTune Amplifier documentation. https://software.intel.com/en-us/vtune.
  4. Nethercote N., Seward J. Valgrind: a Framework for heavyweight dynamic binary instrumentation // SIGPLAN Not. 2007. Vol. 42, N 6. 89-100.
  5. Shvets P., Voevodin Vad., Zhumatiy S. HPC software for massive analysis of the parallel efficiency of applications // Communications in Computer and Information Science. Vol. 1063 Cham: Springer, 2019. 3-18.
  6. Voevodin Vl.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Yu., Stefanov K.S., Voevodin V.V., Zhumatiy S.A. Supercomputer Lomonosov-2: large scale, deep monitoring and fine analytics for the user community // Supercomputing Frontiers and Innovations. 2019. Vol. 6, N 2. 4-11.
  7. Groot R.D., Warren P.B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation // The Journal of Chemical Physics. 1997. Vol. 107, N 11. 4423-4435.
  8. Plimpton S. Fast parallel algorithms for short-range molecular dynamics // J. Comput. Phys. 1995. Vol. 117, N 1. 1-19.
  9. Frank F.C. I. Liquid crystals. On the theory of liquid crystals // Discuss. Faraday Soc. 1958. Vol. 25. 19-28.
  10. Rudyak V.Y., Emelyanenko A.V., Loiko V.A. Structure transitions in oblate nematic droplets // Physical Review E. 2013. Vol. 88, N 5. doi 10.1103/PhysRevE.88.052501.
  11. Profiler Users Guide. https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview.
  12. Yang С., Williams S. Performance analysis of GPU-accelerated applications using the roofline model. https://developer.nvidia.com/gtc/2019/video/S9624.
  13. Никитенко Д.А., Воеводин В.В., Жуматий С.А. Octoshell: система для администрирования больших суперкомпьютерных комплексов // Вестн. ЮУрГУ. Сер. Выч. матем. информ. 2016. Vol. 5, N 3. 76-95.
  14. Shaykhislamov D., Voevodin V. An approach for dynamic detection of inefficient supercomputer applications // Procedia Computer Science. 2018. Vol. 136. 35-43.

Published

2019-10-29

How to Cite

Афанасьев И.В., Воеводин В.В., Рудяк В.Ю., Емельяненко А.В. The Practice of Conducting Performance Analysis of Supercomputer Applications // Numerical methods and programming. 2019. 20. 346-355. doi 10.26089/NumMet.v20r330

Issue

Section

Section 1. Numerical methods and applications