DOI: https://doi.org/10.26089/NumMet.v20r431

Numerical modeling of turbulent flow in a plane channel on the basis of the Cabaret scheme

Authors

  • D.G. Asfandiyarov

Keywords:

plane channel
DNS
ILES
Cabaret scheme
artificial boundary conditions

Abstract

Some results of modeling the classical problem of flow of a viscous incompressible fluid in a plane channel at the Reynolds numbers equal to 5600, 13750, and 21900 using the Cabaret scheme are discussed. The computations are performed for the complete turbulence spectrum resolution (direct numerical simulation) and for the incomplete resolution. In the latter case, the grids typical for the large eddy simulation of near-wall turbulent flows are used. In order to obtain a more accurate representation of the momentum transfer toward the wall, some artificial boundary conditions are introduced. This allows us to model the mean flow characteristics with a higher accuracy. The numerical results obtained by the Cabaret scheme are compared with the numerical results obtained by the pseudospectral method.


Published

2019-10-29

Issue

Section

Section 1. Numerical methods and applications

Author Biography

D.G. Asfandiyarov


References

  1. K. N. Volkov and V. N. Emel’yanov, Large Eddy Simulation in Calculations of Turbulent Flows (Fizmatlit, Moscow, 2008) [in Russian].
  2. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
  3. D. G. Asfandiyarov, V. M. Goloviznin, and S. A. Finogenov, “Parameter-Free Method for Computing the Turbulent Flow in a Plane Channel in a Wide Range of Reynolds Numbers,” Zh. Vychisl. Mat. Mat. Fiz. 55 (9), 1545-1558 (2015) [Comput. Math. Math. Phys. 55 (9), 1515-1526 (2015)].
  4. D. G. Asfandiyarov, “Artificial Boundary Conditions for the ILES Modeling of Plane Channel Flow Using the Cabaret Scheme,” Vychisl. Metody Programm. 20, 12-20 (2019).
  5. R. D. Moser, J. Kim., and N. N. Mansour, “Direct Numerical Simulation of Turbulent Channel Flow up to {@@m Re}_τ=590,” Phys. Fluids 11 (4), 943-945 (1999).
  6. E. Lévêque, F. Toschi, L. Shao, and J.-P. Bertoglio, “Shear-Improved Smagorinsky Model for Large-Eddy Simulation of Wall-Bounded Turbulent Flows,” J. Fluid Mech. 570, 491-502 (2007).