DOI: https://doi.org/10.26089/NumMet.v20r435

A river routing scheme for an Earth system model

Authors

  • V.M. Stepanenko
  • A.I. Medvedev
  • I.A. Korpushenkov
  • N.L. Frolova
  • V.N. Lykosov

Keywords:

Earth system model
land surface scheme
river network
snow melting

Abstract

A new version of the INM RAS-MSU land surface scheme is presented which includes a module for the thermo- and hydrodynamics of rivers. The river dynamics is described by the diffusion wave equations, whereas the river thermodynamics is simulated by the one-dimensional heat equation. The object-oriented implementation of the river routing scheme allows one to use arbitrary solvers of one-dimensional river dynamics problems, for example, the Saint-Venant equations. The snow cover thermodynamics is supplemented by the effects of liquid moisture percolation and freezing. The set of model updates significantly improved simulation of the annual cycle of water discharge and temperature for Severnaya Dvina river.


Published

2019-10-29

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

V.M. Stepanenko

A.I. Medvedev

I.A. Korpushenkov

N.L. Frolova

V.N. Lykosov


References

  1. E. M. Volodin, V. Ya. Galin, A. S. Gritsun, et al., Mathematical Modeling of the Earth System (MAKS Press, Moscow, 2016) [in Russian].
  2. G. M. Flato, “Earth System Models: An Overview,” Wiley Interdiscip. Rev. Clim. Change 2 (6), 783-800 (2011).
  3. V. K. Arora, F. H. S. Chiew, and R. B. Grayson, “A River Flow Routing Scheme for General Circulation Models,” J. Geophys. Res. Atmos. 104 (D12), 14347-14357 (1999).
  4. V. A. Bell, A. L. Kay, R. G. Jones, and R. J. Moore, “Development of a High Resolution Grid-Based River Flow Model for Use with Regional Climate Model Output,” Hydrol. Earth Syst. Sci. 11 (1), 532-549 (2007).
  5. P. Falloon, R. Betts, and C. Bunton, New Global River Routing Scheme in the Unified Model , Tech. Note No. 72 (Hadley Centre, Exeter, 2007).
  6. P. Lucas-Picher, V. K. Arora, D. Caya, and R. Laprise, “Implementation of a Large-Scale Variable Velocity River Flow Routing Algorithm in the Canadian Regional Climate Model (CRCM),” Atmos. Ocean 41 (2), 139-153 (2003).
  7. R. Sausen, S. Schubert, and L. Dümenil, “A Model of River Runoff for Use in Coupled Atmosphere-Ocean Models,” J. Hydrol. 155 (3-4), 337-352 (1994).
  8. A. Ye, Q. Duan, C. Zhan, et al., “Improving Kinematic Wave Routing Scheme in Community Land Model,” Hydrol. Res. 44 (5), 886-903 (2013).
  9. V. I. Kuzin, G. A. Platov, and N. A. Lapteva, “Assessing the Effect of Year-to-Year Runoff Variations in Siberian Rivers on Circulation in the Arctic Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 51 (4), 437-447 (2015) [Izv., Atmos. Ocean. Phys. 51 (4), 381-390 (2015)].
  10. B. Huang and V. M. Mehta, “Influences of Freshwater from Major Rivers on Global Ocean Circulation and Temperatures in the MIT Ocean General Circulation Model,” Adv. Atmos. Sci. 27 (3), 455-468 (2010).
  11. V. V. Malakhova and E. N. Golubeva, “The Role of the Siberian Rivers in Increase of the Dissolved Methane Concentration in the East Siberian Shelf,” Optika Atmosfery Okeana 25 (6), 534-538 (2012).
  12. P. A. Raymond, J. Hartmann, R. Lauerwald, et al., “Global Carbon Dioxide Emissions from Inland Waters,” Nature 503 (7476), 355-359 (2013).
  13. G. H. Allen and T. M. Pavelsky, “Global Extent of Rivers and Streams,” Science 361 (6402), 585-588 (2018).
  14. E. M. Volodin and V. N. Lykosov, “Parametrization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models: 2. Numerical Experiments in Climate Modeling,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34 (5), 622-633 (1998) [Izv., Atmos. Ocean. Phys. 34 (5), 559-569 (1998)].
  15. V. N. Lykosov and E. G. Palagin, “Dynamics of Interrelated Heat and Moisture Transfer in the System Atmosphere-Soil,” Meteorol. Gidrol., No. 8, 48-56 (1978).
  16. The ECHAM3 Atmospheric General Circulation Model. Technical Report No. 6. (Deutsches Klimarechnenzentrum, Hamburg, 1992).
  17. M. F. Wilson and A. Henderson-Sellers, “A global Archive of Land Cover and Soils Data for Use in General Circulation Climate Models,” J. Climatol. 5 (2), 119-143 (1985).
  18. V. Bogomolov, V. Stepanenko, and E. Volodin, “Development of Lake Parametrization in the INMCM Climate Model,” IOP Conference Series: Earth and Environmental Science 48 (2016).
    doi 10.1088/1755-1315/48/1/012005
  19. M. Choulga, E. Kourzeneva, E. Zakharova, and A. Doganovsky, “Estimation of the Mean Depth of Boreal Lakes for Use in Numerical Weather Prediction and Climate Modelling,” Tellus A 66 (2014)
    doi 10.3402/tellusa.v66.21295
  20. V. N. Lykosov and E. G. Palagin, “A Method and an Example for Heat and Moisture Transfer in the Freezing Soil under a Snow Cover,” Tr. Gos. Gidrolog. Inst., No. 264, 12-23 (1980).
  21. E. E. Volodina, L. Bengtsson, and V. N. Lykosov, “Parameterization of Processes of Heat and Moisture Transfer in the Snow Cover for Modeling of Seasonal Variations in the Land Hydrological Cycle,” Meteorol. Gidrol., No. 5, 5-14 (2000).
  22. E. E. Machul’skaya, Simulation and Diagnosis of Processes of Heat and Moisture Transfer between the Atmosphere and Dry Land under Cold Climate Conditions , Candidate’s Dissertation in Mathematics and Physics (Moscow State Univ., Moscow, 2001).
  23. P. D{öll and B. Lehner, “Validation of a New Global 30-Min Drainage Direction Map,” J. Hydrol. 258 (1-4), 214-231 (2002).
  24. J. A. Downing, J. J. Cole, C. M. Duarte, et al., “Global Abundance and Size Distribution of Streams and Rivers,” Inland Waters 2 (4), 229-236 (2012).
  25. D. G. Tarboton, R. L. Bras, and I. Rodriguez-Iturbe, “The Fractal Nature of River Networks,” Water Resour. Res. 24 (8), 1317-1322 (1988).
  26. V. V. Kovalenko, N. V. Viktorova, and E. V. Gaidukova, Simulation of Hydrological Processes (Ross. Gidrometeorol. Univ., St. Petersburg, 2006) [in Russian].
  27. W. Wu, Computational River Dynamics (Taylor and Francis, London, 2008).
  28. S. L. Dingman, Fluvial Hydrology (Freeman, New York, 1984).
  29. C. Yu and J. G. Duan, “High Resolution Numerical Schemes for Solving Kinematic Wave Equation,” J. Hydrol. 519, 823-832 (2014).
  30. A. W. Vreman, “The Adjoint Filter Operator in Large-Eddy Simulation of Turbulent Flow,” Phys. Fluids 16 (6), 2012-2022 (2004).
  31. E. M. Volodin, “Representation of Heat, Moisture, and Momentum Fluxes in Climate Models. Fluxes at Surface,” Fundam. Prikl. Klimatol. 1, 28-42 (2016).