Numerical modeling of chemical interaction between a fluid and rocks




level-set function method, immersed boundary method, chemical dissolution


A new algorithm for the numerical modeling of chemical fluid-rock interaction at the pore scale is proposed. The algorithm is based on splitting the problem into physical processes. It is assumed that the fluid rate is low and the fluid flow is stabilized almost instantly in the case of small changes in the pore space geometry. In the pore space, thus, the fluid flow is modeled using the Stokes equation for steady flows. The chemical reactant transport is described by the convection-diffusion equation with Robin boundary conditions at the fluid-rock interface. The pore space boundary changes with time and is implicitly given by a level-set function. We use finite-difference schemes with immersed boundary conditions to solve the Stokes and convection-diffusion equations.

Author Biographies

K.A. Gadylshina

T.S. Khachkova

V.V. Lisitsa


  1. A. E. Amikiya and M. K. Banda, “Modelling and Simulation of Reactive Transport Phenomena,” J. Comput. Sci. 28, 155-167 (2018).
  2. H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part I: Imaging and Segmentation,” Comput. Geosci. 50, 25-32 (2013).
  3. H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part II: Computing Effective Properties,” Comput. Geosci. 50, 33-43 (2013).
  4. Y. Bazaikin, B. Gurevich, S. Iglauer, et al., “Effect of CT Image Size and Resolution on the Accuracy of Rock Property Estimates,” J. Geophys. Res.: Solid Earth 122 (5), 3635-3647 (2017).
  5. F. Bouchelaghem, “A Numerical and Analytical Study on Calcite Dissolution and Gypsum Precipitation,” Appl. Math. Model. 34 (2), 467-480 (2010).
  6. S. Emberley, I. Hutcheon, M. Shevalier, et al., “Geochemical Monitoring of Fluid-Rock Interaction and CO_2 Storage at the Weyburn CO_2-Injection Enhanced Oil Recovery Site, Saskatchewan, Canada,” Energy 29 (9-10), 1393-1401 (2004).
  7. R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method),” J. Comput. Phys. 152 (2), 457-492 (1999).
  8. M. Ghommem, W. Zhao, S. Dyer, et al., “Carbonate Acidizing: Modeling, Analysis, and Characterization of Wormhole Formation and Propagation,” J. Petrol. Sci. Eng. 131, 18-33 (2015).
  9. F. Gibou, R. Fedkiw, and S. Osher, “A Review of Level-Set Methods and Some Recent Applications,” J. Comput. Phys. 353, 82-109 (2018).
  10. Y. Hao, M. Smith, Y. Sholokhova, and S. Carroll, “CO_2-Induced Dissolution of Low Permeability Carbonates. Part II: Numerical Modeling of Experiments,” Adv. Water Resour. 62 (Part C), 388-408 (2013).
  11. J. D. Hyman and C. L. Winter, “Stochastic Generation of Explicit Pore Structures by Thresholding Gaussian Random Fields,” J. Comput. Phys. 277, 16-31 (2014).
  12. H. Johansen and P. Colella, “A Cartesian Grid Embedded Boundary Method for Poisson’s Equation on Irregular Domains,” J. Comput. Phys. 147 (1), 60-85 (1998).
  13. N. Kalia and V. Balakotaiah, “Effect of Medium Heterogeneities on Reactive Dissolution of Carbonates,” Chem. Eng. Sci. 64 (2), 376-390 (2009).
  14. Q. Kang, L. Chen, A. J. Valocchi, and H. S. Viswanathan, “Pore-Scale Study of Dissolution-Induced Changes in Permeability and Porosity of Porous Media,” J. Hydrol. 517, 1049-1055 (2014).
  15. A. M. M. Leal, M. J. Blunt, and T. C. LaForce, “A Robust and Efficient Numerical Method for Multiphase Equilibrium Calculations: Application to CO_2-Brine-Rock Systems at High Temperatures, Pressures and Salinities,” Adv. Water Resour. 62 (Part C), 409-430 (2013).
  16. M. Lebedev, Y. Zhang, M. Sarmadivaleh, et al., “Carbon Geosequestration in Limestone: Pore-Scale Dissolution and Geomechanical Weakening,” Int. J. Greenh. Gas Con. 66, 106-119 (2017).
  17. X. Li, H. Huang, and P. Meakin, “Level Set Simulation of Coupled Advection-Diffusion and Pore Structure Evolution Due to Mineral Precipitation in Porous Media,” Water Resour. Res. 44 (2008).
    doi 10.1029/2007WR006742
  18. X. Li, H. Huang, and P. Meakin, “A Three-Dimensional Level Set Simulation of Coupled Reactive Transport and Precipitation/Dissolution,” Int. J. Heat Mass Transf. 53 (13-14), 2908-2923 (2010).
  19. K. Luo, Z. Zhuang, J. Fan, and N. E. L. Haugen, “A Ghost-Cell Immersed Boundary Method for Simulations of Heat Transfer in Compressible Flows under Different Boundary Conditions,” Int. J. Heat Mass Transf. 92, 708-717 (2016).
  20. S. Marella, S. Krishnan, H. Liu, and H. S. Udaykumar, “Sharp Interface Cartesian Grid Method I: An Easily Implemented Technique for 3D Moving Boundary Computations,” J. Comput. Phys. 210 (1), 1-31 (2005).
  21. A. Meirmanov, N. Omarov, V. Tcheverda, and A. Zhumaly, “Mesoscopic Dynamics of Solid-Liquid Interfaces. A General Mathematical Model,” Sib. Elektron. Mat. Izv. 12, 884-900 (2015).
  22. R. Mittal and G. Iaccarino, “Immersed Boundary Methods,” Ann. Rev. Fluid. Mech. 37 (1), 239-261 (2005).
  23. S. Molins, D. Trebotich, C. I. Steefel, and C. Shen, “An Investigation of the Effect of Pore Scale Flow on Average Geochemical Reaction Rates Using Direct Numerical Simulation,” Water Resour. Res. 48 (2012).
    doi 10.1029/2011WR011404
  24. S. Molins, D. Trebotich, L. Yang, et al., “Pore-Scale Controls on Calcite Dissolution Rates from Flow-through Laboratory and Numerical Experiments,” Environ. Sci. Technol. 48 (13), 7453-7460 (2014).
  25. J. Mou and S. Zhang, “Modeling Acid Leakoff during Multistage Alternate Injection of Pad and Acid in Acid Fracturing,” J. Nat. Gas Sci. Eng. 26, 1161-1173 (2015).
  26. S. Osher and R. Fedkiw, “Level Set Methods: An Overview and Some Recent Results,” J. Comput. Phys. 169 (2), 463-502 (2001).
  27. C. S. Peskin, “Flow Patterns around Heart Valves: A Numerical Method,” J. Comput. Phys. 10 (2), 252-271 (1972).
  28. F. Sotiropoulos and X. Yang, “Immersed Boundary Methods for Simulating Fluid-Structure Interaction,” Prog. Aerosp. Sci. 65, 1-21 (2014).
  29. C. I. Steefel, C. A. J. Appelo, B. Arora, et al., “Reactive Transport Codes for Subsurface Environmental Simulation,” Comput. Geosci. 19 (3), 445-478 (2015).
  30. C. I. Steefel and A. C. Lasaga, “A Coupled Model for Transport of Multiple Chemical Species and Kinetic Precipitation/Dissolution Reactions with Application to Reactive Flow in Single Phase Hydrothermal Systems,” Am. J. Sci. 294 (5), 529-592 (1994).
  31. M. Sussman and E. Fatemi, “An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow,” SIAM J. Sci. Comput. 20 (4), 1165-1191 (1999).
  32. M. Sussman, E. Fatemi, P. Smereka, and S. Osher, “An Improved Level Set Method for Incompressible Two-Phase Flows,” Comput. Fluids 27 (5-6), 663-680 (1998).
  33. D. Trebotich, M. F. Adams, S. Molins, et al., “High-Resolution Simulation of Pore-Scale Reactive Transport Processes Associated with Carbon Sequestration,” Comput. Sci. Eng. 16 (6), 22-31 (2014).
  34. Y.-H. Tseng and J. H.  Ferziger, “A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry,” J. Comput. Phys. 192 (2), 593-623 (2003).
  35. T. Vanorio, A. Nur, and Y. Ebert, “Rock Physics Analysis and Time-Lapse Rock Imaging of Geochemical Effects Due to the Injection of CO_2 into Reservoir Rocks,” Geophysics. 76 (2011).
    doi 10.1190/geo2010-0390.1
  36. Z. Xu and P. Meakin, “Phase-Field Modeling of Solute Precipitation and Dissolution,” J. Chem. Phys. 129 (2008).
    doi 10.1063/1.2948949
  37. H. Yoon, A. J. Valocchi, C. J. Werth, and T. A. Dewers, “Pore-scale Simulation of Mixing-Induced Calcium Carbonate Precipitation and Dissolution in a Microfluidic Pore Network,” Water Resour. Res. 48 (2012).
    doi 10.1029/2011WR011192
  38. G. Zimmermann, G. Blöcher, A. Reinicke, and W. Brandt, “Rock Specific Hydraulic Fracturing and Matrix Acidizing to Enhance a Geothermal System - Concepts and Field Results,” Tectonophysics 503 (1-2), 146-154 (2011).



How to Cite

Гадыльшина К., Хачкова Т., Лисица В. Numerical Modeling of Chemical Interaction Between a Fluid and Rocks // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2020. 20. 457-470. doi 10.26089/NumMet.v20r440



Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 > >>