DOI: https://doi.org/10.26089/NumMet.v20r444

Mechanisms of generation and noise sources of supersonic jets and the numerical simulation of their gas dynamic and aeroacoustic characteristics

Authors

  • K.N. Volkov
  • V.N. Emelyanov
  • A.I. Tsvetkov
  • P.S. Chernyshov

Keywords:

computational fluid dynamics
computational aeroacoustics
supersonic jet
underexpanded jet
noise

Abstract

The interest in the development of models and methods focused on the study of mechanisms of noise generation in jets is explained by tightening requirements imposed on the noise produced by various industrial devices. The models of computational fluid dynamics and aeroacoustics, the integral methods of far-field noise calculation, and the numerical implementation of the corresponding mathematical models are considered. The capabilities of the developed numerical simulation tools are demonstrated by the solution of practical problems related to the noise generation by supersonic underexpanded jets. The effect of the nozzle pressure ratio on the jet structure and the distribution of gas-dynamic and acoustic characteristics is discussed. The developed tools for the numerical solution of problems in the computational fluid dynamics and computational aeroacoustics can be considered as the tools for solving various research and engineering problems and as the basis for the development of new methods and numerical algorithms.


Published

2020-01-11

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

K.N. Volkov

V.N. Emelyanov

A.I. Tsvetkov

P.S. Chernyshov


References

  1. G. Raman, “Supersonic Jet Screech: Half-Century from Powell to the Present,” J. Sound Vib. 225 (3), 543-571 (1999).
  2. A. S. Ginevskii, E. V. Vlasov, and R. K. Karavosov, Acoustic Control of Turbulent Jets (Fizmalit, Moscow, 2001) [in Russian].
  3. C. Chin, M. Li, C. Harkin, et al., “Investigation of the Flow Structures in Supersonic Free and Impinging Jet Flows,” J. Fluids Eng. 135 (2013).
    doi 10.1115/1.4023190
  4. K. N. Volkov, V. N. Emel’yanov, and V. A. Zazimko, Turbulent Jets: Static Models and Simulation of Large Eddies (Fizmalit, Moscow, 2014) [in Russian].
  5. V. Zapryagaev, N. Kiselev, and D. Gubanov, “Shock-Wave Structure of Supersonic Jet Flows,” Aerospace 5 (2018).
    doi 10.3390/aerospace5020060
  6. V. M. Boyko, A. V. Dostovalov, V. I. Zapryagaev, et al., “Investigation of Supersonic Nonisobaric Jet Structure,” Uchen. Zap. TsAGI 41 (2), 44-58 (2010) [TsAGI Sci. J. 41 (2), 187-205 (2010)].
  7. B. Emami, M. Bussman, and H. Tran, “Application of Realizability and Shock Unsteadiness to k–ε Simulations of Under-Expanded Axisymmetric Supersonic Free Jets,” J. Fluid Eng. 132 (2010).
    doi 10.1115/1.4001341
  8. D. S. Nichols, “Accounting for Shocks in the KEKW Turbulence Model,” AIAA Paper (2011).
    doi 10.2514/6.2011-3573
  9. Y. H. Oh and D. M. Bushnell, Influence of External Disturbances and Compressibility on Free Turbulent Mixing , NASA Report SP-347 (NASA Langley Research Center, Hampton, 1975).
  10. S. Sarkar, Modeling the Pressure-Dilatation Correlation , NASA Report CR-187566 (NASA Langley Research Center, Hampton, 1991).
  11. A. T. Thies and C. K. W. Tam, “Computation of Turbulent Axisymmetric and Nonaxisymmetric Jet Flows Using the K–ε Model,” AIAA J. 34 (2), 309-316 (1996).
  12. C. K. W. Tam and L. Auriault, “Jet Mixing Noise from Fine-Scale Turbulence,” AIAA J. 37 (2), 145-153 (1999).
  13. A. Khavaran, D. C. Kenzakowski, and A. F. Mielke-Fagan, “Hot Jets and Sources of Jet Noise,” Int. J. Aeroacoust. 9 (4-5), 491-532 (2010).
  14. M. M. A. Alam, T. Setoguchi, S. Matsuo, and H. D. Kim, “Nozzle Geometry Variations on the Discharge Coefficient,” Propul. Power Res. 5 (1), 22-33 (2016).
  15. J.-H. Kim, M. Kearney-Fischer, M. Samimy, and S. Gogineni, “Far-Field Noise Control in Supersonic Jets From Conical and Contoured Nozzles,” J. Eng. Gas Turbines Power 133 (2011).
    doi 10.1115/1.4002811
  16. V. N. Emelyanov, A. I. Tsvetkov, and K. N. Volkov, “Mechanism of Generation and Sources of Noise in Supersonic Jets,” J. Akustika 32, 144-150 (2019).
  17. V. N. Emelyanov, A. V. Pustovalov, and K. N. Volkov, “Supersonic Jet and Nozzle Flows in Uniform-Flow and Free-Vortex Aerodynamic Windows of Gas Lasers,” Acta Astronaut. 163, Part A, 232-243 (2019).
  18. C. K. W. Tam, “Supersonic Jet Noise,” Annu. Rev. Fluid Mech. 27, 17-43 (1995).
  19. J. E. Ffowcs Williams, “The Noise from Turbulence Convected at High Speed,” Philos. Trans. R. Soc. Lond. A. Math. Phys. Sci. 255, 469-503 (1963).
  20. O. M. Phillips, “On the Generation of Sound by Supersonic Turbulent Shear Layers,” J. Fluid Mech. 9 (1), 1-28 (1960).
  21. C. K. W. Tam, P. Chen, and J. M. Seiner, “Relationship between the Instability Waves and Noise of High-Speed Jets,” AIAA J. 7 (30), 1747-1752 (1992).
  22. M. E. Goldstein, “An Exact Form of Lilley’s Equation with Velocity Quadrupole/Temperature Dipole Source Term,” J. Fluid Mech. 443, 231-236 (2001).
  23. M. Harper-Bourne and M. J. Fisher, “The Noise from Shock Waves in Supersonic Jets,” in Proc. AGARD Conference on Noise Mechanisms (Adv. Group Aero. Res. Dev., Brussels, 1973), Vol. 2, No. 131, pp. 11-1-11-13.
  24. T. D. Norum and J. M. Seiner, “Broadband Shock Noise from Supersonic Jets,” AIAA J. 20 (1), 68-73 (1982).
  25. M. B. Alkislar, A. Krothapalli, and L. M. Lourenco, “Structure of a Screeching Rectangular Jet: A Stereoscopic Particle Image Velocimetry Study,” J. Fluid Mech. 489, 121-154 (2003).
  26. R. Farr, C.-L. Chang, J. H. Jones, and N. S. Dougherty, “On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet,” AIAA Paper (2015).
    doi 10.2514/6.2015-3126
  27. V. L. Bakulev and A. M. Vorobyov, “Suppression of Supersonic Block Jets Noise by Water Injection,” Vestn. St. Petersburg Univ., Ser. 1. 2 (3), 415-425 (2015).
  28. F. Farassat, “Linear Acoustic Formulas for Calculation of Rotating Blade Noise,” AIAA J. 19 (9), 1122-1130 (1981).
  29. F. Farassat, “Prediction of Advanced Propeller Noise in the Time Domain,” AIAA J. 24 (4), 578-584 (1986).
  30. K. S. Brentner and F. Farassat, “Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces,” AIAA J. 36 (8), 1379-1386 (1998).
  31. K. Volkov, “Multigrid and Preconditioning Techniques in CFD Applications,” in CFD Techniques and Thermo-Mechanics Applications (Springer, Cham, 2018), pp. 83-149.