DOI: https://doi.org/10.26089/NumMet.v21r106

Multiscale supercomputer modeling of gas purification processes by the adsorption method

Authors

  • S.V. Polyakov
  • Yu.N. Karamzin
  • T.A. Kudryashova
  • V.O. Podryga
  • D.V. Puzyrkov
  • N.I. Tarasov

Keywords:

multiscale supercomputer modeling
gas purification by adsorption
high-performance computing

Abstract

This paper considers the problem of supercomputer modeling of processes for cleaning the air from fine-dispersed solid polluting impurities clustered in the form of nanoparticles. The simulated purification method involves the use of nanofilters and sorbents. Both the purification methods are often combined in modern treatment systems. The cleaning method using nanofilters allows one to obtain the high quality of purification, but is expensive due to the need for frequent replacement of filter elements (membranes). The cleaning method using sorbents is somewhat worse in quality, however, it allows cleaning many times after washing the sorbent with special liquids. To optimize air cleaning systems using nanofilters and sorbents, a detailed study of the processes occurring in the cleaning system is necessary. The proposed study considers part of the problem associated with the passage of an air stream containing solid pollutant nanoparticles through a layer of granular sorbent. To accomplish this, a multiscale mathematical model, a numerical algorithm and a parallel implementation of the model on a macroscopic scale have been developed. The novelty of the approach is associated with the use of a quasigasdynamic model to describe the flow in the sorbing layer and several variants of the boundary conditions on the sorbent granules. Preliminary calculations show the possibility of calculating flows of a similar class.


Published

2020-02-13

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

S.V. Polyakov

Yu.N. Karamzin

T.A. Kudryashova

V.O. Podryga

D.V. Puzyrkov

N.I. Tarasov


References

  1. W. Strauss, Industrial Gas Cleaning (Pergamon, New York, 1975; Khimiya, Moscow, 1981).
  2. N. V. Keltsev, Fundamentals of Adsorption Technique (Khimiya, Moscow, 1976) [in Russian].
  3. V. G. Matveikin, V. A. Pogonin, S. B. Putin, and S. A. Skvortsov, Mathematical Modeling and Control of Short-Cycle Nonthermal Adsorption (Mashinostroenie-1, Moscow, 2007) [in Russian].
  4. E. S. Pikalov, Processes and Apparatuses for Environmental Protection. Physico-Сhemical Methods for Cleaning the Industrial Emissions in the Atmosphere and Gydrosphere (Vladimir Gos. Univ., Vladimir, 2016) [in Russian].
  5. Yu. A. Gorbatenko, Adsorption of Toxic Gas Impurities from Contaminated Air (Ural. Gos. Lesotekhn. Univ., Ekaterinburg, 2014) [in Russian].
  6. A. M. Mazgarov and O. M. Kornetova, Technologies for Cleaning Associated Gas from Hydrogen Sulphide (Kazan Univ., Kazan, 2015) [in Russian].
  7. G. T. Shcherban, M. I. Zhukova, N. A. Nikulin, and V. A. Obrubov, Resource-Saving during the Fume Cleaning in Synthetic Rubber Industry (TsNIITE Neftekhim., Moscow, 1988) [in Russian].
  8. L. B. Begun and V. I. Trachenko, Adsorption Refining of Gas Emissions from Organic Compounds (TsNIITE Neftekhim., Moscow, 1985) [in Russian].
  9. N. M. Kuz’menko, Yu. M. Afanas’ev, G. S. Frolov, and V. N. Glupanov, Adsorption Refining of Natural Gas from Sulfide Compounds (TsNIITE Neftekhim., Moscow, 1987) [in Russian].
  10. S. Brunauer, Adsorption of Gases and Vapors (Oxford Univ. Press, London, 1945; Izdatinlit, Moscow, 1948).
  11. E. A. Shtokman, Air Cleaning (ASW Press, Moscow, 2007) [in Russian].
  12. N. F. Gladyshev, T. V. Gladysheva, and S. I. Dvoretskiy, Systems of Air Regeneration and Cleaning in Habitable Hermetic Objects (Spektr, Moscow, 2016) [in Russian].
  13. V. S. Soldatov, A. A. Shunkevich, and V. V. Martsinkevich, “Comparative Study of Water Softening with Granular and Fibrous Ion Exchangers,” Zh. Prikl. Khim. 74 (9), 1477-1480 (2001) [Russ. J. Appl. Chem. 74 (9), 1521-1524 (2001)].
  14. E. A. Zakharchenko, O. B. Mokhodoeva, and G. V. Myasoedova, “Use of Fibrous Filled Sorbents for the Dynamic Concentration of Noble Metals,” Sorbtsion. Khromatich. Protsessy 5 (5), 679-689 (2005).
  15. I. V. Komarova, N. K. Galkina, and K. I. Shcheptovetskaya, “Study of Fibrous Sorbent Filled with Cation-Exchanger KU-2 Using Mathematical Models of Water Softening Process,” Sorbtsion. Khromatich. Protsessy 10 (3), 371-377 (2010).
  16. Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Multiscale Simulation of Nonlinear Processes in Technical Microsystems,” Mat. Model. 27 (7), 65-74 (2015).
  17. T. Kudryashova, Yu. Karamzin, V. Podryga, and S. Polyakov, “Two-Scale Computation of N_2-H_2 Jet Flow Based on QGD and MMD on Heterogeneous Multi-Core Hardware,” Adv. Eng. Softw. 120, 79-87 (2018).
  18. V. O. Podryga, Yu. N. Karamzin, T. A. Kudryashova, and S. V. Polyakov, “Multiscale Simulation of Three-Dimensional Unsteady Gas Flows in Microchannels of Technical Systems,” in Proc. Seventh European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016), Crete Island, Greece, June 5-10, 2016.
    https://www.eccomas2016.org/proceedings/pdf/8869.pdf . Cited February 7, 2020.
  19. V. O. Podryga, “Multiscale Approach to Computation of Three-Dimensional Gas Mixture Flows in Engineering Microchannels,” Dokl. Akad. Nauk 469 (6), 656-658 (2016) [Dokl. Math. 94 (1), 458-460 (2016)].
  20. V. O. Podryga and S. V. Polyakov, “Parallel Implementation of Multiscale Approach to the Numerical Study of Gas Microflows,” Vychisl. Metody Programm. 17, 147-165 (2016).
  21. V. O. Podryga and S. V. Polyakov, Multiscale Modeling of Gas Jet Outflow to Vacuum , Preprint No. 81 (Keldysh Inst. Appl. Math., Moscow, 2016).
  22. T. Kudryashova, V. Podryga, and S. Polyakov, “HPC-Simulation of Gasdynamic Flows on Macroscopic and Molecular Levels,” in Nonlinearity. Problems, Solutions and Applications (Nova Science Publ., New York, 2017), pp. 543-556.
  23. L. I. Kheifets and A. V. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian].
  24. P. V. Moskalev and V. V. Shitov, Mathematical Modeling of Porous Structures (Fizmatlit, Moscow, 2007) [in Russian].
  25. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987).
  26. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 2004).
  27. G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications (Springer, New York, 1996).
  28. O. M. Belotserkovskii and Yu. I. Khlopkov, Monte Carlo Methods in Mechanics of Fluid and Gas (Azbuka, Moscow, 2008; World Scientific Publ., Singapore, 2010).
  29. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (CIMNE, Barcelona, 2008).
  30. T. G. Elizarova, Quasi-Gas Dynamic Equations and Methods for the Computation of Viscous Flow (Nauchnyi Mir, Moscow, 2007) [in Russian].
  31. Yu. V. Sheretov, Dynamics of Continuum Media under Spatiotemporal Averaging (Regular and Chaotic Dynamics, Izhevsk, 2009) [in Russian].
  32. T. G. Elizarova, A. A. Zlotnik, and B. N. Chetverushkin, “On Quasi-Gasdynamic and Quasi-Hydrodynamic Equations for Binary Gas Mixtures,” Dokl. Akad. Nauk 459 (4), 395-399 (2014) [Dokl. Math. 90 (3), 719-723 (2014)].
  33. V. O. Podryga, S. V. Polyakov, and D. V. Puzyrkov, “Supercomputer Molecular Modeling of Thermodynamic Equilibrium in Gas-Metal Microsystems,” Vychisl. Metody Programm. 16, 123-138 (2015).
  34. V. O. Podryga and S. V. Polyakov, Molecular Dynamic Calculation of Gas Macroparameters in the Stream and on the Boundary , Preprint No. 80 (Keldysh Inst. Appl. Math., Moscow, 2016).
  35. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].
  36. R. Eymard, T. Gallouёt, and R. Herbin, “Finite Volume Methods,” in Handbook of Numerical Analysis (North Holland, Amsterdam, 2000), Vol. 7, pp. 713-1020.
  37. Yu. N. Grigor’ev, V. A. Vshivkov, and M. P. Fedoruk, Numerical Simulation with Particle-in-Cell Methods (Izd. Ross. Akad. Nauk, Novosibirsk, 2004) [in Russian].
  38. I. V. Popov and S. V. Polyakov, “Construction of Adaptive Irregular Triangular Grids for 2D Multiply Connected Nonconvex Domains,” Mat. Model. 14 (6), 25-35 (2002).
  39. Computational Fluid Dynamics in ANSYS CFX.
    https://www.cadfem-cis.ru/products/ansys/fluids/cfx/. Cited February 7, 2020.
  40. I. V. Popov and I. V. Fryazinov, Method of Adaptive Artificial Viscosity for Solving the Gas Dynamics Equations (Krasand, Moscow, 2014) [in Russian].
  41. Yu. N. Karamzin and S. V. Polyakov, “Exponential Finite Volume Schemes for Solving Elliptic and Parabolic Equations of the General Type on Irregular Grids,” in Proc. 8th All-Russian Conference on Grid Methods for Boundary-Value Problems and Applications, Kazan, Russia, September 30-October 5, 2010 (Kazan Gos. Univ., Kazan, 2010), pp. 234-248.