DOI: https://doi.org/10.26089/NumMet.v21r107

An efficient software implementation of numerical methods for solving stiff systems of delay differential equations

Authors

  • D.A. Zheltkov
  • R.M. Tretiakova
  • V.V. Zheltkova
  • G.A. Bocharov

Keywords:

numerical methods
delay differential equations
stiff systems
linear multistep methods

Abstract

The systems of delay differential equation are widely used in modern mathematical modeling. The process of mathematical model development and identification requires the repeated solution of initial value problems for such systems. The numerical solution of delay differential equations may be computationally expensive, especially when the problem is stiff and high-dimensional. Therefore, it is important to develop and implement the efficient algorithms for the numerical solution of different classes of delay differential equations. In this paper, a new implementation of DIFSUBDEL program package for the numerical solution of delay differential equations based on linear multistep methods is discussed. The modified version is based on structured programming principles to make the program thread safe and user-friendly. The modified program performance is compared with the existing implementations of numerical methods for the solution of delay differential equations.


Published

2020-02-18

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

D.A. Zheltkov

R.M. Tretiakova

V.V. Zheltkova

G.A. Bocharov


References

  1. C. T. H. Baker, G. A. Bocharov, and F. A. Rihan, A Report on the Use of Delay Differential Equations in Numerical Modelling in the Biosciences , Report MCCM 1360-1725 (Manchester Centre for Computational Mathematics, Manchester, 1999).
  2. G. A. Bocharov and F. A. Rihan, “Numerical Modelling in Biosciences Using Delay Differential Equations,” J. Comput. Appl. Math. 125 (1-2), 183-199 (2000).
  3. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics (Academic Press, New York, 1993).
  4. H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences (Springer, New York, 2011).
  5. C. T. H. Baker, C. A. H. Paul, and D. R. Willé, A Bibliography on the Numerical Solution of Delay Differential Equations , Numerical Analysis Report No. 269 (Univ. of Manchester, Manchester, 1995).
  6. A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations (Oxford Univ. Press, Oxford, 2013).
  7. L. F. Shampine and S. Thompson, Solving Delay Differential Equations with dde23 ,
    https://www.radford.edu/thompson/webddes/tutorial.pdf . Cited February 9, 2020.
  8. D. R. Willé and C. T. H. Baker, “DELSOL - a Numerical Code for the Solution of Systems of Delay-Differential Equations,” Appl. Numer. Math. 9 (3-5), 223-234 (1992).
  9. K. W. Neves, “Automatic Integration of Functional Differential Equations: An Approach,” ACM Trans. Math. Softw. 1 (4), 357-368 (1975).
  10. Project radar5 0.1.
    https://pypi.org/project/radar5 . Cited February 9, 2020.
  11. S. Thompson and L. F. Shampine, “A Friendly Fortran DDE Solver,” Appl. Numer. Math. 56 (3-4), 503-516 (2006).
  12. L. F. Shampine, P. H. Muir, and H. Xu, “A User-Friendly Fortran BVP Solver,” J. Numer. Anal. Ind. Appl. Math. 1 (2), 201-217 (2006).
  13. G. A. Bocharov and A. A. Romanyukha, Numerical Solution of Delay-Differential Equations on the Basis of Linear Multistep Methods. Approximation, Convergence, and Stability , Preprint No. 116 (Numer. Math. Department of USSR Academy of Sciences, Moscow, 1986).
  14. G. A. Bocharov and A. A. Romanyukha, Numerical Solution of Delay-Differential Equations on the Basis of Linear Multistep Methods. Algorithm and Program , Preprint No. 117 (Numer. Math. Department of USSR Academy of Sciences, Moscow, 1986).
  15. G. Bocharov, G. Marchuk, and A. Romanyukha, “Numerical Solution by LMMs of Stiff Delay Differential Systems Modeling an Immune Response,” Numer. Math. 73, 131-148 (1996).
  16. DIFSUBDEL. |
    https://bitbucket.org/a_valerya/difsubdel/src/master/|. Cited February 9, 2020.
  17. R. Bellman and K. L. Cooke, Differential-Difference Equations (Academic Press, New York, 1963).
  18. S. P. Corwin, D. Sarafyan, and S. Thompson, “DKLAG6: A Code Based on Continuously Imbedded Sixth-Order Runge-Kutta Methods for the Solution of State-Dependent Functional Differential Equations,” Appl. Numer. Math. 24 (2-3), 319-330 (1997).
  19. D. Sarafyan, “Approximate Solution of Ordinary Differential Equations and Their Systems through Discrete and Continuous Embedded Runge-Kutta Formulae and Upgrading of Their Order,” Comput. Math. Appl. 28 (10-12), 353-384 (1994).
  20. C. A. H. Paul, A User-Guide to Archi: An Explicit Runge-Kutta Code for Solving Delay and Neutral Differential Equations and Parameter Estimation Problems , Numerical Analysis Report No. 283 (Extended) (Univ. of Manchester, Manchester, 1997).
  21. C. T. H. Baker, J. C. Butcher, and C. A. H. Paul, Experience of STRIDE Applied to Delay Differential Equations , Numerical Analysis Report No. 208 (Univ. of Manchester, Manchester, 1992).
  22. E. Lo and Z. Jackiewicz, “The Algorithm SNDDELM for the Numerical Solution of Systems of Neutral Delay Differential Equations,” in Delay Differential Equations with Applications in Population Dynamics (Academic Press, New York, 1993), pp. 377-393.
  23. L. F. Shampine and S. Thompson, “Solving DDEs in Matlab,” Appl. Numer. Math. 37 (4), 441-458 (2001).
  24. MathWorks.
    https://www.mathworks.com/. Cited February 9, 2020.
  25. O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming (Academic Press, New York, 1972).