DOI: https://doi.org/10.26089/NumMet.v21r110

On second-order accuracy schemes for modeling of plasma oscillations

Authors

  • E.V. Chizhonkov

Keywords:

numerical simulation
plasma oscillations
breaking effect
McCormack and Lax-Wendroff schemes
accuracy order of difference scheme
conservation laws

Abstract

For modeling cold plasma oscillations in the non-relativistic and relativistic cases, some modifications of classical difference schemes of the second order of accuracy are proposed: the McCormack method and the two-stage Lax-Wendroff method. Previously, only the first-order accuracy scheme was known for calculations in Euler variables. For the problem of free plasma oscillations initiated by a short high-power laser pulse, the results of numerical experiments on energy conservation and other quantities were performed in order to test the proposed schemes. It is concluded that the numerical analysis of oscillations is reliable both for the McCormack scheme and for the Lax-Wendroff scheme; however, for the calculation of "long-lived" processes, the first scheme is more preferable. The theoretical analysis of approximation and stability together with experimental observations of quantitative characteristics of errors for the most sensitive quantities significantly increases the reliability of calculations.


Published

2020-03-11

Issue

Section

Section 1. Numerical methods and applications

Author Biography

E.V. Chizhonkov


References

  1. R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972).
  2. Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].
  3. A. I. Akhiezer and R. V. Polovin, “Theory of Wave Motion of an Electron Plasma,” Zh. Eksp. Teor. Fiz. 30 (5), 915-928 (1956) [J. Exp. Theor. Phys. 3, 696-705 (1956)].
  4. J. M. Dawson, “Nonlinear Electron Oscillations in a Cold Plasma,” Phys. Rev. 113 (2), 383-387 (1959).
  5. G. Lehmann, E. W. Laedke, and K. H. Spatschek, “Localized Wake-Field Excitation and Relativistic Wave-Breaking,” Phys. Plasmas 14 (2007).
    doi 10.1063/1.2796103
  6. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
  7. E. V. Chizhonkov, Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma (Fizmatlit, Moscow, 2018; CRC Press, Boca Raton, 2019).
  8. A. A. Frolov and E. V. Chizhonkov, “The Effect of Electron-Ion Collisions on the Breaking of Cylindrical Plasma Oscillations,” Mat. Model. 30 (10), 86-106 (2018). [Math. Models Comput. Simul. 11 (3), 438-450 (2019)].
  9. A. A. Frolov and E. V. Chizhonkov, “Numerical Modeling of Plasma Oscillations with Consideration of Electron Thermal Motion,” Vychisl. Metody Programm. 19, 194-206 (2018).
  10. E. V. Chizhonkov and A. A. Frolov, “Influence of Electron Temperature on Breaking of Plasma Oscillations,” Russ. J. Numer. Anal. Math. Modelling 34 (2), 71-84 (2019).
  11. S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (Nauka, Moscow, 1973; North Holland, Amsterdam, 1987).
  12. D. E. Potter, Computational Physics (Wiley, London, 1973; Mir, Moscow, 1975).
  13. Yu. I. Shokin and N. N. Yanenko, Method of Differential Approximation: Application to Gas Dynamics (Nauka, Novosibirsk, 1985) [in Russian].
  14. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Hemisphere, New York, 1984; Mir, Moscow, 1990).
  15. V. P. Silin, Introduction to Kinetic Theory of Gases (Nauka, Moscow, 1971) [in Russian].
  16. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer, New York, 1984; Vysshaya Shkola, Moscow, 1988).
  17. V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975) [in Russian].
  18. V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media (Librokom, Moscow, 2012) [in Russian].
  19. C. J. R. Sheppard, “Cylindrical Lenses - Focusing and Imaging: A Review [Invited],” Appl. Opt. 52 (4), 538-545 (2013).
  20. R. W. MacCormack, “The Effect of Viscosity in Hypervelocity Impact Cratering,” J. Spacecr. Rockets 40 (2003).
    doi 10.2514/2.6901
  21. P. D. Lax and B. Wendroff, “Systems of Conservation Laws III,” Commun. Pure Appl. Math. 13 (2), 217-237 (1960).
  22. Z. I. Fedotova, “On the Application of the MacCormack Scheme for Problems of Long Wave Hydrodynamics,” Vychisl. Teknol. 11, Special Issue, 53-63 (2006).
  23. J. Machalinska-Murawska and M. Szydlowski, “Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow,” Arch. Hydro-Eng. Environ. Mech. 60 (1-4), 51-62 (2013).