Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method




hybrid large-particle method, resolving capacity, multicomponent gas mixtures


This paper is devoted to the development of a large-particle hybrid method for two-dimensional flows with physical instability on the interface of inhomogeneous gas mixtures. The high resolving capacity of the method is shown for problems of shock wave interaction with a cylindrical bubble of a light or heavy gas in comparison with experiments and simulations using other schemes of higher-order approximation.

Author Biography

D.V. Sadin


  1. A. Marquina and P. Mulet, “A Flux-Split Algorithm Applied to Conservative Models for Multicomponent Compressible Flows,” J. Comput. Phys. 185 (1), 120-138 (2003).
  2. J. H. J. Niederhaus, A Computational Parameter Study for Three-Dimensional Shock-Bubble Interactions , PhD thesis (University of Wisconsin, Madison, 2007).
  3. S. K. Shankar, S. Kawai, and S. K. Lele, “Numerical Simulation of Multicomponent Shock Accelerated Flows and Mixing Using Localized Artificial Diffusivity Method,” in Proc. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, January 4-7, 2010 (American Institute of Aeronautics and Astronautics, Reston, 2010),
    doi 10.2514/6.2010-352
  4. I. E. Ivanov and I. A. Kryukov, “Numerical Algorithm of Modeling of the Two-Phase Flow Containing Interphase Boundaries,” Fiz.-Khim. Kinetika v Gazovoi Dinam. 13 (4) (2012). Cited March 17, 2020.
  5. V. Coralic and T. Colonius, “Finite-Volume WENO Scheme for Viscous Compressible Multicomponent Flows,” J. Comput. Phys. 274, 95-121 (2014).
  6. K.-M. Shyue and F. Xiao, “An Eulerian Interface Sharpening Algorithm for Compressible Two-Phase Flow: The Algebraic THINC Approach,” J. Comput. Phys. 268, 326-354 (2014).
  7. A. V. Danilin, A. V. Solovjev, and A. M. Zaitsev, “A Modification of the CABARET Scheme for Numerical Simulation of Multicomponent Gaseous Flows in Two-Dimensional Domains,” Vychisl. Metody Programm. 16, 436-445 (2015).
  8. M. L. Wong and S. K. Lele, “High-Order Localized Dissipation Weighted Compact Nonlinear Scheme for Shock- and Interface-Capturing in Compressible Flows,” J. Comput. Phys. 339, 179-209 (2017).
  9. B. Wang, G. Xiang, and X. Y. Hu, “An Incremental-Stencil WENO Reconstruction for Simulation of Compressible Two-Phase Flows,” Int. J. Multiphase Flow 104, 20-31 (2018).
  10. O. M. Belotserkovskii and Yu. M. Davydov, “A Non-Stationary ’Coarse particle’ Method for Gas-Dynamical Computations,” Zh. Vychisl. Mat. Mat. Fiz. 11 (1), 182-207 (1971) [USSR Comput. Math. Math. Phys. 11 (1), 241-271 (1971)].
  11. D. V. Sadin, “TVD Scheme for Stiff Problems of Wave Dynamics of Heterogeneous Media of Nonhyperbolic Nonconservative Type,” Zh. Vychisl. Mat. Mat. Fiz. 56 (12), 2098-2109 (2016) [Comput. Math. Math. Phys. 56 (12), 2068-2078 (2016)].
  12. D. V. Sadin, “Schemes with Customizable Dissipative Properties as Applied to Gas-Suspensions Flow Simulation,” Mat. Model. 29 (12), 89-104 (2017).
  13. D. V. Sadin, “Application of Scheme with Customizable Dissipative Properties for Gas Flow Calculation with Interface Instability Evolution,” Nauch.-Tekhn. Vestn. Inform. Tekhnol. Mekhan. Optik. 18 (1), 153-157 (2018).
  14. D. V. Sadin, “Application of a Hybrid Large-Particle Method for Calculating Multicomponent Gas Mixture Flows,” Vychisl. Metody Programm. 20, 489-497 (2019).
  15. J. Shi, Y.-T. Zhang, and C.-W. Shu, “Resolution of High Order WENO Schemes for Complicated Flow Structures,” J. Comput. Phys. 186 (2), 690-696 (2003).
  16. R. Abgrall, “How to Prevent Pressure Oscillations in Multicomponent Flow Calculations: A Quasi Conservative Approach,” J. Comput. Phys. 125 (1), 150-160 (1996).
  17. R. Abgrall and S. Karni, “Computations of Compressible Multifluids,” J. Comput. Phys. 169 (2), 594-623 (2001).
  18. D. V. Sadin, B. V. Belyaev, and V. A. Davidchuk, “Comparison of a Modified Large-Particle Method with Some High Resolution Schemes. Two-Dimensional Test Problems,” Vychisl. Metody Programm. 20, 337-345 (2019).
  19. S. K. Godunov, “A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics,” Mat. Sb. 47 (3), 271-306 (1959).
  20. D. V. Sadin, “On the Convergence of a Certain Class of Difference Schemes for the Equations of Unsteady Gas Motion in a Disperse Medium,” Zh. Vychisl. Mat. Mat. Fiz. 38 (9), 1572-1577 (1998) [Comput. Math. Math. Phys. 38 (9), 1508-1513 (1998)].
  21. D. V. Sadin, “A Modification of the Large-Particle Method to a Scheme Having the Second Order of Accuracy in Space and Time for Shockwave Flows in a Gas Suspension,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Mat. Model. Programm. 12 (2), 112-122 (2019).
  22. J.-F. Haas and B. Sturtevant, “Interaction of Weak Shock Waves with Cylindrical and Spherical Gas Inhomogeneities,” J. Fluid Mech. 181. 41-76 (1987).
  23. J. J. Quirk and S. Karni, “On the Dynamics of a Shock-Bubble Interaction,” J. Fluid Mech. 318, 129-163 (1996).



How to Cite

Садин Д.В. Simulation of Physical Instability on Contact Boundaries in Multicomponent Compressible Gas Flows by a Hybrid Large-Particle Method // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2020. 21. 129-137. doi 10.26089/NumMet.v21r211



Section 1. Numerical methods and applications