Numerical modeling of statistical moments in a galactic dynamo problem with nonlinearity
Authors
-
D.A. Grachev
-
S.A. Elistratov
Keywords:
galactic dynamo
magnetic field
equations with random coefficients
statistical moment
Abstract
In this paper we consider a nonlinear modification of a stochastic model of the galactic dynamo in which the coefficient of turbulent diffusion is assumed to be a random process with renewal. It is shown that, in the case of small magnetic field strength, its statistical moments behave almost in the same manner as in the linear model; it is also shown that the intermittency effect exists. The characteristic time periods of moment stabilization are estimated when the magnetic field approaches its equilibrium. The numerical results obtained by averaging various samplings of its independent random implementations are compared.
Section
Section 1. Numerical methods and applications
References
- Ya. B. Zel’dovich, A. A. Ruzmaikin, and D. D. Sokoloff, The Almighty Chance (World Scientific, Singapore, 1990).
- {D. A. Grachev, }, “Tensor Approach to the Problem of Averaging Differential Equations with δ-Correlated Random Coefficients,” Mat. Zametki 87 (3), 359-368 (2010) [Math. Notes 87 (3-4), 336-344 (2010)].
- V. E. Shapiro and V. M. Loginov, Dynamical Systems under Random Actions (Novosibirsk, Nauka, 1983) [in Russian].
- {A. V. Fursikov, }, “The Problem of Closure of the Chains of Moment Equations Corresponding to the Three-Dimensional Navier-Stokes System in the Case of Large Reynolds Numbers,” Dokl. Akad. Nauk 319 (1), 83-87 (1991) [Dokl. Math. 44 (1), 80-85 (1992)].
- {A. V. Fursikov, }, “Moment Theory for the Navier-Stokes Equations with a Random Right Side,” Izv. Ross. Akad. Nauk, Ser. Mat. 56 (6), 1273-1315 (1992) [Izv. Math. 41 (3), 515-555 (1993)].
- V. I. Klyatskin, Stochastic Equations through the Eye of the Physicist (Fizmatlit, Moscow, 2001).
- {R. Beck, A. Brandenburg, D. Moss, et al., }, “Galactic Magnetism: Recent Development and Perspectives,” Ann. Rev. Astron. Astrophys. 34, 155-206 (1996).
- F. Krause and K.-H. R854dler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, Oxford, 1980).
- {D. Moss, }, “On the Generation of Bisymmetric Magnetic Field Structures in Spiral Galaxies by Tidal Interactions,” Mon. Not. R. Astron. Soc. 275 (1), 191-194 (1995).
- {A. Phillips, }, “A Comparison of the Asymptotic and no-z Approximations for Galactic Dynamos,” Geophys. Astrophys. Fluid Dyn. 94 (1-2), 135-150 (2001).
- {T. G. Arshakian, R. Beck, M. Krause, and D. Sokoloff, }, “Evolution of Magnetic Fields in Galaxies and Future Observational Tests with the Square Kilometre Array,” Astron. Astrophys. 494 (1), 21-32 (2009).
- {E. A. Mikhailov, D. D. Sokoloff, and Yu. N. Efremov, }, “Star Formation Rate and Magnetic Fields in Spiral Galaxies,” Pis’ma Astron. Zh. 38 (9), 611-616 (2012) [Astron. Lett. 38 (9), 543-548 (2012)].
- {M. R. E. Proctor, }, “Effects of fluctuation on αΩ dynamo models,” Month. Not. R. Astron. Soc.: Lett. 382 (1), L39-L42 (2007).
- {K. J. Richardson and M. R. E. Proctor, }, “Fluctuating αΩ Dynamos by Iterated Matrices,” Month. Not. R. Astron. Soc.: Lett. 422 (1), L53-L56 (2012).
- {E. A. Mikhailov and V. V. Pushkarev, }, “Fluctuations of the Turbulent Diffusion Coefficient in Galaxy Dynamo Equations,” Vychisl. Metody Programm. 17, 447-454 (2016).
- {E. A. Mikhailov and D. A. Grachev, }, “Galaxy Dynamo in Inhomogeneous Interstellar Medium,” Communications of the Byurakan Astrophysical Observator 65 (2), 346-352 (2018).
- {D. A. Grachev, S. A. Elistratov, and E. A. Mikhailov, }, “Statistical Moments and Multipoint Magnetic Field Correlators in a Galactic Dynamo Model with Random Turbulent Diffusion,” Vychisl. Metody Programm. 20, 88-96 (2019).
- {E. A. Mikhailov, }, “Star Formation and Galactic Dynamo Model with Helicity Fluxes,” Pis’ma Astron. Zh. 40 (7), 445-453 (2014) [Astron. Lett. 40 (7), 398-405 (2014)].
- {E. A. Mikhailov and V. V. Pushkarev, }, “Influence of Star Formation on Large Scale Structures of Galactic Magnetic Fields,” Astrofiz. Byull. 73 (4), 451-456 (2018) [Astrophys. Bull. 73 (4), 425-429 (2018)].
- {Ya. B. Zel’dovich, S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov, }, “Intermittency in Random Media,” Usp. Fiz. Nauk 152 (1), 3-32 (1987) [Sov. Phys. Usp. 30 (5), 353-369 (1987)].
- {D. A. Grachev and A. G. Zhdanov, }, “Simulation of the Nonlinear Regime for the Lagrangian Solutions of Some Stochastic Evolutionary Equations,” Zh. Vychisl. Mat. Mat. Fiz. 52 (10), 1890-1903 (2012).
- {D. A. Grachev and E. A. Mikhailov, }, “Numerical Modeling of a Two-Point Correlator for the Lagrange Solutions of Some Evolution Equations,” Vychisl. Metody Programm. 18, 277-283 (2017).