DOI: https://doi.org/10.26089/NumMet.v21r319

Two-dimensional effects on the interaction of a shock wave with a cloud of particles

Authors

  • K.N. Volkov
  • V.N. Emelyanov
  • A.G. Karpenko
  • I.V. Teterina

Keywords:

two-phase flow
numerical simulation
shock wave
particle
concentration
cloud of particles

Abstract

A statistical approach based on the kinetic equation for the probability density function of the distribution of particle velocity and temperature is used to develop a continuum model describing pseudoturbulent flows of the dispersed phase. The introduction of the probability density function allows one to obtain a statistical description of an ensemble of particles instead of a dynamic description of individual particles based on Langevin equations of motion and heat transfer. The equations for the first and second moments of the dispersed phase are derived and the numerical simulation of the unsteady gas–particle flow arising due to the interaction of a shock wave with a cloud of particles is performed. The governing equations are of the hyperbolic type and are written in a conservative form. They are solved by a Godunov numerical method of high order of accuracy. Two-dimensional effects on the formation of the shock-wave structure of the gasparticle flow and distributions of particle concentration and other flow quantities in time and space are discussed.


Published

2020-09-27

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

K.N. Volkov

D.F. Ustinov Baltic State Technical University «Voenmekh»,
Faculty of Rocket and Space Engineering
• Leading Researcher

V.N. Emelyanov

D.F. Ustinov Baltic State Technical University «Voenmekh»,
Faculty of Rocket and Space Engineering
• Professor

A.G. Karpenko

I.V. Teterina

D.F. Ustinov Baltic State Technical University «Voenmekh»,
Faculty of Rocket and Space Engineering
• Associate Professor


References

  1. R. K. Eckhoff, Dust Explosions in the Process Industries (Gulf Professional Publ., Houston, 2003).
  2. K. N. Volkov and V. N. Emel’yanov, Flows of Gas with Particles (Fizmatlit, Moscow, 2008) [in Russian].
  3. K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. S. Kozelkov, and I. V. Teterina, Difference Schemes in Gas Dynamics on Unstructured Grids (Fizmatlit, Moscow, 2014) [in Russian].
  4. G. Ben-Dor, “Dust Entrainment by Means of a Planar Shock Induced Vortex over Loose Dust Layers,” Shock Waves 4, 285-288 (1995).
  5. D. Lhuillier, C.-H. Chang, and T. G. Theofanous, “On the Quest for a Hyperbolic Effective-Field Model of Disperse Flows,” J. Fluid Mech. 731, 184-194 (2013).
  6. T. G. Theofanous, V. Mitkin, and C.-H. Chang, “The Dynamics of Dense Particle Clouds Subjected to Shock Waves. Part 1. Experiments and Scaling Laws,” J. Fluid Mech. 792, 658-681 (2016).
  7. T. G. Theofanous and C.-H. Chang, “The Dynamics of Dense Particle Clouds Subjected to Shock Waves. Part 2. Modeling/Numerical Issues and the Way Forward,” Int. J. Multiphase Flow 89, 177-206 (2017).
  8. J. Regele, J. Rabinovitch, T. Colonius, and G. Blanquart, “Numerical Modeling and Analysis of Early Shock Wave Interactions with a Dense Particle Cloud,” AIAA Paper (2012).
    doi 10.2514/6.2012-3161
  9. J. D. Regele, J. Rabinovitch, T. Colonius, and G. Blanquart, “Unsteady Effects in Dense, High Speed, Particle Laden Flows,” Int. J. Multiphase Flow 61, 1-13 (2014).
  10. J. L. Wagner, S. J. Beresh, S. P. Kearney, et al., “A Multiphase Shock Tube for Shock Wave Interactions with Dense Particle Fields,” Exp. Fluids 5 (2), 1507-1517 (2012).
  11. A. Clemins, “Representation of Two-Phase Flows by Volume Averaging,” Int. J. Multiphase Flow 14 (1), 81-90 (1988).
  12. G. Jacobs, W.-S. Don, and T. Dittmann, “Computation of Normal Shocks Running into a Cloud of Particles using a High-Order Particle-Source-in-Cell Method,” AIAA Paper (2009).
    doi 10.2514/6.2009-1310
  13. T. Dittmann, G. Jacobs, and W.-S. Don, “Dispersion of a Cloud of Particles by a Moving Shock: Effects of Shape, Angle of Incidence and Aspect Ratio,” AIAA Paper (2012).
    doi 10.2514/6.2011-441
  14. Z. Hosseinzadeh-Nik, S. Subramaniam, and J. D. Regele, “Investigation and Quantification of Flow Unsteadiness in Shock-Particle Cloud Interaction,” Int. J. Multiphase Flow 101, 186-201 (2018).
  15. O. Sen, N. J. Gaul, S. Davis, et al., “Role of Pseudo-Turbulent Stresses in Shocked Particle Clouds and Construction of Surrogate Models for Closure,” Shock Waves 28 (3), 579-597 (2018).
  16. Y. Mehta, C. Neal, K. Salari, et al., “Propagation of a Strong Shock over a Random Bed of Spherical Particles,” J. Fluid Mech. 839, 157-197 (2018).
  17. T. G. Theofanous, V. Mitkin, C.-H. Chang, “Shock Dispersal of Dilute Particle Clouds,” J. Fluid Mech. 841, 732-745 (2018).
  18. A. N. Osnes, M. Vartdal, M. G. Omang, and B. A. P. Reif, “Computational Analysis of Shock-Induced Flow through Stationary Particle Clouds,” Int. J. Multiphase Flow 114, 268-286 (2019).
  19. S. P. Medvedev, S. M. Frolov, and B. E. Gel’fand, “Attenuation of Shock Waves by Screens of Granular Material,” Inzh. Fiz. Zh. 58 (6), 924-928 (1990) [J. Eng. Phys. Thermophys. 58 (6), 714-718 (1990)].
  20. P. S. Utkin, “Mathematical Modeling of the Interaction of a Shock Wave with a Dense Cloud of Particles within the Framework of the Two-Fluid Approach,” Khim. Fiz. 36 (11), 61-71 (2017) [Russ. J. Phys. Chem. B 11, 963-973 (2017)].
  21. A. Abe, K. Takayama, and K. Itoh, “Experimental and Numerical Study of Shock Wave Propagation over Cylinders and Spheres,” WIT Trans. Model. Sim. 30, 209-218 (2001).
  22. M. Mehrabadi, S. Tenneti, R. Garg, and S. Subramaniam, “Pseudo-Turbulent Gas-Phase Velocity Fluctuations in Homogeneous Gas-Solid Flow: Fixed Particle Assemblies and Freely Evolving Suspensions,” J. Fluid Mech. 770, 210-246 (2015).
  23. B. Sun, S. Tenneti, S. Subramaniam, and D. L. Koch, “Pseudo-Turbulent Heat Flux and Average Gas-Phase Conduction during Gas-Solid Heat Transfer: Flow Past Random Fixed Particle Assemblies,” J. Fluid Mech. 798, 299-349 (2016).
  24. B. Shotorban, G. B. Jacobs, O. Ortiz, and Q. Truong, “An Eulerian Model for Particles Nonisothermally Carried by a Compressible Fluid,” Int. J. Heat Mass Transf. 65, 845-854 (2013).
  25. K. N. Volkov, V. N. Emel’yanov, A. G. Karpenko, and I. V. Teterina, “Simulation of Unsteady Gas-Particle Flow Induced by the Shock-Wave Interaction with a Particle Layer,” Vychisl. Metody Programm. 21, 96-114 (2020).
  26. R. V. R. Pandya and F. Mashayek, “Two-Fluid Large-Eddy Simulation Approach for Particle-Laden Turbulent Flows,” Int. J. Heat Mass Transf. 45 (24), 4753-4759 (2002).