DOI: https://doi.org/10.26089/NumMet.v21r321

An error estimate for an approximate solution to ordinary differential equations obtained using the Chebyshev series

Authors

  • O.B. Arushanyan
  • S.F. Zaletkin

Keywords:

ordinary differential equations
approximate analytical methods
numerical methods
orthogonal expansions
shifted Chebyshev series
Markov quadrature formulas
polynomial approximation
precision control
error estimate
automatic step size control

Abstract

An approximate method of solving the Cauchy problem for nonlinear first-order ordinary differential equations is considered. The method is based on using the shifted Chebyshev series and a Markov quadrature formula. Some approaches are given to estimate the error of an approximate solution expressed by a partial sum of a certain order series. The error is estimated using the second approximation of the solution expressed by a partial sum of a higher order series. An algorithm of partitioning the integration interval into elementary subintervals to ensure the computation of the solution with a prescribed accuracy is discussed on the basis of the proposed approaches to error estimation.


Published

2020-09-27

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

O.B. Arushanyan

S.F. Zaletkin


References

  1. S. K. Tatevyan, N. A. Sorokin, and S. F. Zaletkin, “Markov’s Formula for Numerical Integration and Its Application in Orthogonal Expansions,” Vychisl. Metody Programm. 2, 131-158 (2001).
  2. S. F. Zaletkin, “Markov’s Formula with Two Fixed Nodes for Numerical Integration and Its Application in Orthogonal Expansions,” Vychisl. Metody Programm. 6, 1-17 (2005).
  3. O. B. Arushanyan, N. I. Volchenskova, and S. F. Zaletkin, “Calculation of Expansion Coefficients of Series in Chebyshev Polynomials for a Solution to a Cauchy Problem,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 5, 24-30 (2012) [Moscow Univ. Math. Bull. 67 (5-6), 211-216 (2012)].
  4. O. B. Arushanyan, N. I. Volchenskova, and S. F. Zaletkin, “A Method of Solving the Cauchy Problem for Ordinary Differential Equations Using Chebyshev Series,” Vychisl. Metody Programm. 14, 203-214 (2013).
  5. O. B. Arushanyan, N. I. Volchenskova, and S. F. Zaletkin, “On an Approximate Analytical Method of Solving Ordinary Differential Equations,” Vychisl. Metody Programm. 16, 235-241 (2015).
  6. O. B. Arushanyan and S. F. Zaletkin, “Approximate Solution of the Cauchy Problem for Ordinary Differential Equations by the Method of Chebyshev Series,” Vychisl. Metody Programm. 17, 121-131 (2016).
  7. O. B. Arushanyan and S. F. Zaletkin, “On Solvability of a Nonlinear System of Equations for the Fourier-Chebyshev Coefficients in the Problem of Solving Ordinary Differential Equations Using Chebyshev Series,” Vychisl. Metody Programm. 18, 169-174 (2017).
  8. E. Hairer, S. P. Nörsett, and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems (Springer, Berlin, 1987; Mir, Moscow, 1990).
  9. R. England, “Error Estimates for Runge-Kutta Type Solutions to Systems of Ordinary Differential Equations,” Comput. J. 12 (2), 166-170 (1969).
  10. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Binom, Moscow, 2007) [in Russian].
  11. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall, Englewood Cliffs, 1971).