Computational aspects of mathematical modeling of the shallow water hydrobiological processes




Allee effect, taxis, mathematical model of population interaction, biogydrocenosis, parallel algorithm, modified data storage format, software complex, graphics accelerator


Paper covers the research of nonlinear effects in population dynamics of the pelengas commercial fish of the Azov Sea taking into account the Allee effect, competition for resources, taxis, catching, spatial distribution of biogenic matter and detritus based on a multi-species model of plankton and fish interaction. Discrete analogue of developed model problem of water ecology, included in a software complex, were calculated using schemes of second order of accuracy taking into account the partial filling of computational cells. The system of grid equations of large dimension, arising at discretization, has been solved on the basis of adaptive modified alternately triangual variational method. Effective parallel algorithms were developed for numerical implementation of biological kinetics problem and oriented on multiprocessor computer system and NVIDIA Tesla K80 graphics accelerator with the data storage format modification. Due to it, the reproduction processes of biogeocenose populations have been analyzed in real and accelerated time.

Author Biographies

A.I. Sukhinov

Don State Technical University,
Faculty IT Systems and Technologites
• Professor, Corresponding Member of RAS, Head of Department

A.E. Chistyakov

V.N. Litvinov

Don State Agrarian University
Azov-Black Sea Engineering Institute,
• Head of Department

A.V. Nikitina

Southern Federal University
• Associate Professor

Yu.V. Belova

A.A. Filina


  1. V. V. Menshutkin, L. A. Rukhovets, and N. N. Filatov, “Ecosystem Modeling of Freshwater Lakes (Review): 2. Models of Freshwater Lake’s Ecosystem,” Vodn. Resur. 41 (1), 24-38 (2014) [Water Resour. 41 (1), 32-45 (2014)].
  2. B. A. Hawkins and H. V. Cornell (Eds.), Theoretical Approaches to Biological Control (Cambridge Univ. Press, Cambridge, 1999).
  3. W. C. Allee, Animal Aggregations: A Study in General Sociology (Chicago Univ. Press, Chicago, 1931).
  4. Yu. V. Tyutyunov and L. I. Titova, “Simple Models for Studying Complex Spatiotemporal Patterns of Animal Behavior,” Deep Sea Res. Part II: Top. Stud. Oceanogr. 140, 193-202 (2017).
  5. P. A. Stephens and W. J. Sutherland, “Consequences of the Allee Effect for Behaviour, Ecology and Conservation,” Trends Ecol. Evol. 14 (10), 401-405 (1999).
  6. S.-R. Zhou, Y.-F. Liu, and G. Wang, “The Stability of Predator-Prey Systems Subject to the Allee Effects,” Theor. Popul. Biol. 67 (1), 23-31 (2005).
  7. G. G. Vinberg, “Biological Productivity of Reservoirs,” Ecology, No. 3, 3-12 (1983).
  8. G. G. Matishov and V. G. Il’ichev, “Optimal Utilization of Water Resources: The Concept of Internal Prices,” Dokl. Akad. Nauk 406 (2), 249-251 (2006) [Dokl. Earth. Sci. 406 (1), 86-88 (2006)].
  9. V. V. Voevodin and Vl. V. Voevodin, Parallel Computing (BHV-Petersburg, St. Petersburg, 2002) [in Russian].
  10. V. P. Gergel’, High Performance Computing for Multiprocessor Multicore Systems (Mosk. Gos. Univ., Moscow, 2010) [in Russian].
  11. A. I. Sukhinov and A. E. Chistyakov, “Parallel Implementation of a Three-Dimensional Hydrodynamic Model of Shallow Water Basins on Supercomputing Systems,” Vychisl. Metody Programm. 13, 290-–297 (2012).
  12. A. I. Sukhinov, “Precise Hydrodynamic Models and Their Applications to the Prediction and Reconstruction of Emergency Situations in the Sea of Azov,” Izv. Taganrog Radiotekh. Univ., No. 3, 228-235 (2006).
  13. A. S. Stepanovskikh, Biological Ecology. Theory and Practice (Unity-Dana, Moscow, 2009) [in Russian].
  14. N. A. Vasilieva, A. A. Vladimirov, and A. M. Winter, “Consideration of Nonlinear Effects in the Model of the Age Structure of the Atlantic Cod Population,” in Proc. Fifth Nat. Conf. on Mathematical Modeling in Ecology, Pushchino, Russia, October 16-20, 2017 (Inst. of Physico-Chem. Biolog. Probl., Pushchino, 2017), pp. 42-44.
  15. A. Yu. Perevaryukha, “Chaotic Regimes in Models of the Theory of Formation of Population Recruitment,” Nelin. Mir 7 (12), 925-932 (2009).
  16. A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, et al., “Improvement of Numerical Solution Smoothness for the Hydrodynamics Problems Modeling on Rectangular Grids,” Comput. Math. Inform. Technol. 1 (1), 1-16 (2019).
  17. A. I. Sukhinov, A. E. Chistyakov, and N. A. Fomenko, “Method of Construction Difference Scheme for Problems of Diffusion-Convection-Reaction, Taking into Account the Degree Filling of the Control Volume,” Izv. Yuzhn. Federal. Univ., Tekh. Nauki, No. 4, 87-98 (2013).
  18. A. N. Konovalov, “To the Theory of the Alternating Triangle Iteration Method,” Sib. Mat. Zh. 43 (3), 552-572 (2002) [Sib. Math. J. 43 (3), 439-457 (2002)].
  19. A. I. Sukhinov and A. E. Chistyakov, “Adaptive Modified Alternating Triangular Iterative Method for Solving Grid Equations with a Non-Self-Adjoint Operator,” Mat. Model. 24 (1), 3-20 (2012) [Math. Models Comput. Simul. 4 (4), 398-409 (2012)].
  20. A. I. Sukhinov and V. V. Sidoryakina, “Convergence of Linearized Sequence Tasks to the Nonlinear Sediment Transport Task Solution,” Mat. Model. 29 (11), 19-39 (2017).
  21. A. I. Sukhinov, A. E. Chistyakov, A. A. Semenyakina, and A. V. Nikitina, “Numerical Modeling of Ecologic Situation of the Azov sea with Using Schemes of Increased Order of Accuracy on Multiprocessor Computer System,” Comput. Issled. Model. 8 (1), 151-168 (2016).
  22. A. I. Sukhinov, A. V. Nikitina, A. E. Chistyakov, and I. S. Semenov, “Mathematical Modeling of the Formation of Suffocation Conditions in Shallow Basins Using Multiprocessor Computing Systems,” Vychisl. Metody Programm. 14, 103-112 (2013).
  23. A. V. Nikitina and I. S. Semenov, “Numerical Implementation of Methods for Solving Problems of Biological Kinetics in the Azov Sea,” Izv. Yuzhn. Federal. Univ., Tekh. Nauki, No. 1, 138-143 (2014).
  24. A. I. Sukhinov, A. V. Nikitina, and A. E. Chistyakov, “Using Multichannel Satellite Images for Predictive Modelling the, “bloom” Phytoplankton Processes in Shallow Waters on Supercomputer,” Comput. Math. Inform. Technol. 1 (2), 1-13 (2017).
  25. A. I. Sukhinov, A. E. Chistyakov, A. V. Nikitina, et al., “Supercomputer Modeling of Hydrochemical Condition of Shallow Waters in Summer Taking into Account the Influence of the Environment,” in Communications in Computer and Information Science (Springer, Cham, 2018), Vol. 910, pp. 336-351.



How to Cite

Сухинов А., Чистяков А., Литвинов В., Никитина .А., Белова Ю., Филина А. Computational Aspects of Mathematical Modeling of the Shallow Water Hydrobiological Processes // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2020. 21. 452-469. doi 10.26089/NumMet.v21r436



Methods and algorithms of computational mathematics and their applications

Most read articles by the same author(s)