Development of an efficient parallel Poisson equation solver for the simulation of protoplanetary disk evolution
Authors
-
V.A. Vshivkov
-
A.V. Snytnikov
Keywords:
Poisson equation
nonstationary problems
iteration methods
protoplanetary disk
Abstract
A Poisson equation solver is proposed. The main idea of the solver is taking the features of the problem under study into account. Since the problem is nonstationary, it is possible to solve the Poison equation quickly by means of simple iteration methods. The consideration of the axial symmetry of the disk allows one to construct a domain decomposition with a very small amount of interprocessor communications. In addition, the infinitely thin disk approximation allows one to speed up the computations when using the iteration methods. The paper was prepared on the basis of the authors' report at the International Conference on Parallel Computing Technologies (PaVT-2009; http://agora.guru.ru/pavt).
Section
Section 1. Numerical methods and applications
References
- Снытников В.Н., Вшивков В.А., Дудникова Г.И., Никитин С.А., Пармон В.Н., Снытников А.В. Численное моделирование гравитационных систем многих тел с газом // Вычислительные технологии. 2002. 7, № 3. 72-84.
- Miller R.H. Validity of disk galaxy simulations // J. of Comp. Phys. 1976. 21, N 4. 400-437.
- Деммель Дж. Вычислительная линейная алгебра. М.: Мир. 2001.
- Ильин В.П. Методы неполной факторизации для решения алгебраических систем. М.: Наука, 1995.
- Калиткин Н.Н. Численные методы. М.: Наука, 1978.
- Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
- Numerical Algorithms Group. NAG Fortran Library (http://www.nag.co.uk/numeric/FL/FLdocumentation.asp).
- Intel Math Kernel Library 10.0 (http://www.intel.coin/cd/software/products/asmo-na/eng/307757.htm).