A numerical model of drop dynamics of viscous liquid

Authors

  • I.L. Maikov
  • L.B. Director

Keywords:

mathematical modeling
viscous liquid
level set function
Plato sphere
free surface

Abstract

On the basis of the level set function method, a numerical model of viscous liquid dynamics is proposed to describe the processes of nonlinear drop oscillations during free falling, impact with a horizontal surface, breaking up, and merge of liquid drops in an immiscible fluid. Solutions for fluids with the characteristic density ratio less than 0.001 and Re>1000 are obtained. The results of modeling the process of drop falling are compared with available numerical and experimental 


Published

2009-03-23

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

I.L. Maikov

L.B. Director


References

  1. Udaykumar H.S., Kan H.C., Shyy W., Tran-Son-Tay R. Multiphase dynamics in arbitrary geometries on fixed Cartesian grids // Journal of Computational Physics. 1997. 137. 366-405.
  2. Francois M., Shyy W. Computation of drop dynamics with the immerse boundary method. Part 1: numerical algorithm and buoyancy-induced effect // Numerical Heat Transfer. Part B. 2003. 44. 101-118.
  3. Hirt C.W., Nichols B.D. Volume of Fluid (VOF) method for the dynamics of free boundaries // Journal of Computational Physics. 1981. 39. 201-225.
  4. Rudman M. Volume tracking method for interfacial flow calculations // International Journal for Numerical Methods in Fluids. 1998. 24. 671-691.
  5. Sussman M., Almgren A.S., Bell J.B., Colella P., Howell L., Welcome M. An adaptive level set approach for incompressible two-phase flow // Journal of Computational Physics. 1999. 148. 81-124.
  6. Sethian J.A. Level Set methods and fast marching methods. Cambridge University Press. Cambridge, 2002.
  7. Osher S.J., Fedkiw R.P. Level set methods and dynamic implicit surfaces. Springer. NY, 2003.
  8. Роуч П. Вычислительная гидродинамика. M.: Мир, 1980.
  9. Ковеня В.М., Яненко Н.Н. Метод расщепления в задачах газовой динамики. Новосибирск: Наука, 1981.
  10. Patankar S.V. Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. NY, 1980.
  11. Ghorin A.J. Numerical solution of Navier-Stokes equations // Mathematics of Computations. 1968. 22. 745-762.
  12. Белоцерковский O.M. Численное моделирование в механике сплошных сред. М.: Физматлит, 1994.
  13. Майков И.Л., Директор Л.Б. Численное решение задачи о затухающих нелинейных колебаниях капли вязкой
  14. жидкости // Журнал экспериментальной и теоретической физики. 2008. 133 (6). 1-8.
  15. Brackbill J.U., Kothe D.B., Zemach С.A. A continuum method for modeling surface tension // Journal of Computational Physics. 1992. 100. 335-354.
  16. Van der Vorst H. Iterative Krylov methods for large linear systems. Cambridge University Press. Cambridge, 2003.
  17. Березин И.С., Жидков Н.П. Методы вычислений. Т. 1. М.: Физматлит, 1962.
  18. Francois М., Shyy М. Computation of drop dynamics with the immerse boundary method. Part 2: drop impact and heat transfer // Numerical Heat Transfer. Part B. 2003. 44. 119-143.
  19. Директор Л.Б., Майков И.Л., Середа А.А. Теплофизические свойства веществ (жидкие металлы, сплавы и наносистемы) // Труды II Международного семинара. Нальчик: КБГУ, 2006. 67.
  20. Сивухин Д.В. Термодинамика и молекулярная физика. М: Наука, 1977.