A numerical model of drop dynamics of viscous liquid
Authors
-
I.L. Maikov
-
L.B. Director
Keywords:
mathematical modeling
viscous liquid
level set function
Plato sphere
free surface
Abstract
On the basis of the level set function method, a numerical model of viscous liquid dynamics is proposed to describe the processes of nonlinear drop oscillations during free falling, impact with a horizontal surface, breaking up, and merge of liquid drops in an immiscible fluid. Solutions for fluids with the characteristic density ratio less than 0.001 and Re>1000 are obtained. The results of modeling the process of drop falling are compared with available numerical and experimental
Section
Section 1. Numerical methods and applications
References
- Udaykumar H.S., Kan H.C., Shyy W., Tran-Son-Tay R. Multiphase dynamics in arbitrary geometries on fixed Cartesian grids // Journal of Computational Physics. 1997. 137. 366-405.
- Francois M., Shyy W. Computation of drop dynamics with the immerse boundary method. Part 1: numerical algorithm and buoyancy-induced effect // Numerical Heat Transfer. Part B. 2003. 44. 101-118.
- Hirt C.W., Nichols B.D. Volume of Fluid (VOF) method for the dynamics of free boundaries // Journal of Computational Physics. 1981. 39. 201-225.
- Rudman M. Volume tracking method for interfacial flow calculations // International Journal for Numerical Methods in Fluids. 1998. 24. 671-691.
- Sussman M., Almgren A.S., Bell J.B., Colella P., Howell L., Welcome M. An adaptive level set approach for incompressible two-phase flow // Journal of Computational Physics. 1999. 148. 81-124.
- Sethian J.A. Level Set methods and fast marching methods. Cambridge University Press. Cambridge, 2002.
- Osher S.J., Fedkiw R.P. Level set methods and dynamic implicit surfaces. Springer. NY, 2003.
- Роуч П. Вычислительная гидродинамика. M.: Мир, 1980.
- Ковеня В.М., Яненко Н.Н. Метод расщепления в задачах газовой динамики. Новосибирск: Наука, 1981.
- Patankar S.V. Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. NY, 1980.
- Ghorin A.J. Numerical solution of Navier-Stokes equations // Mathematics of Computations. 1968. 22. 745-762.
- Белоцерковский O.M. Численное моделирование в механике сплошных сред. М.: Физматлит, 1994.
- Майков И.Л., Директор Л.Б. Численное решение задачи о затухающих нелинейных колебаниях капли вязкой
- жидкости // Журнал экспериментальной и теоретической физики. 2008. 133 (6). 1-8.
- Brackbill J.U., Kothe D.B., Zemach С.A. A continuum method for modeling surface tension // Journal of Computational Physics. 1992. 100. 335-354.
- Van der Vorst H. Iterative Krylov methods for large linear systems. Cambridge University Press. Cambridge, 2003.
- Березин И.С., Жидков Н.П. Методы вычислений. Т. 1. М.: Физматлит, 1962.
- Francois М., Shyy М. Computation of drop dynamics with the immerse boundary method. Part 2: drop impact and heat transfer // Numerical Heat Transfer. Part B. 2003. 44. 119-143.
- Директор Л.Б., Майков И.Л., Середа А.А. Теплофизические свойства веществ (жидкие металлы, сплавы и наносистемы) // Труды II Международного семинара. Нальчик: КБГУ, 2006. 67.
- Сивухин Д.В. Термодинамика и молекулярная физика. М: Наука, 1977.