Parallel molecular dynamics with Ewald summation and integration on GPU

Authors

  • A.S. Boyarchenkov
  • S.I. Potashnikov

Keywords:

molecular dynamics
Ewald summation
parallel computing
graphics processors
CUDA

Abstract

The problem of molecular dynamics simulation with periodic boundary conditions is considered. Efficient algorithms for the Ewald summation method are discussed. Parallel implementations on GPU with NVIDIA CUDA technology are proposed. The integration of motion equations on GPU with single and double precision of floating point arithmetic is analyzed. On an NVIDIA GeForce GTX 280 video card, a remarkable speed-up up to 890 times is achieved compared to a scalar code running on Intel Core 2 Quad Q9550 CPU.


Published

2020-11-09

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

A.S. Boyarchenkov

Institute of Mathematics and Mechanics, Ural Branch of RAS
• PhD Student

S.I. Potashnikov

Ural State Technical University,
Physics and Technology Faculty
• Senior Lecturer


References

  1. http://en.wikipedia.org/wiki/Computer_simulation
  2. http://en.wikipedia.org/wiki/Molecular.dynamics
  3. Gibbon P., Sutmann G. Long-range interactions in many-particle simulation // Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms. Lecture Notes, J. Grotendorst, D. Marx, A. Muramatsu (Eds.), NIC Series, 2002. Vol. 10. 467-506 (http://www.fz-juelich.de/nic-series/volumelO/gibbon.pdf).
  4. Сравнительные характеристики процессоров компаний Intel, ATI, NVIDIA (http://en.wikipedia.org/wiki/List_of_Intel_microprocessors, http://en.wikipedia.org/wiki/Comparison_of_NVIDIA_Graphics_Processing_Units, http://en.wikipedia.org/wiki/Comparison_of_ATI_Graphics_Processing_Units).
  5. http://en.wikipedia.org/wiki/Cell_(microprоcessor)
  6. NVIDIA GeForce GTX 200 GPU Datasheet (http://www.nvidia.com/docs/IO/55506/GeForce_GTX_GPU_Datasheet.pdf).
  7. NVIDIA Tesla personal supercomputer (http://www.nvidia.com/docs/IO/43395/ NV_DS_Tesla_PSC_US_Dec08_LowRes.pdf).
  8. Боярченков А.С., Поташников С.И. Использование графических процессоров и технологии CUDA для задач молекулярной динамики // Вычислительные методы и программирование. 2009. 10. 9-23 (https://num-meth.rcc.msu.ru/zhurnal/tom_2009/v10r102.html).
  9. NVIDIA CUDA Documentation (http://www.nvidia.com/object/cuda_develop.html).
  10. MD-GRAPE Technical Report (http://www.research.ibm.com/grape/grape_mdgrape2.htm).
  11. http://en.wikipedia.org/wiki/CUDA #Supported_GPUs
  12. http://en.wikipedia.org/wiki/Ewald_summation
  13. http://en.wikipedia.org/wiki/Molecular_dynamics#Empirical_potentials
  14. Поташников С.И., Боярченков А. С., Некрасов К. А., Купряжкин А.Я. Молекулярно-динамическое восстановление межчастичных потенциалов в диоксиде урана по тепловому расширению // Международный научный журнал “Альтернативная энергетика и экология”. 2007. 8. 43-52 (http: //isjaee.hydrogen.ru/pdf/AEE0807/AEE08-07_Potashnikov.pdf).
  15. http://en.wikipedia.org/wiki/ViriaLtheorem
  16. http://en.wikipedia.org/wiki/Equations_of_motion
  17. http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
  18. Berendsen H., Postma J., van Gunsteren W., Dinola A., Haak J. Molecular dynamics with coupling to an external bath // Journal of Chemical Physics. 1984. 81 (8). 3684-3690.
  19. Pre.55 W.IL, Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes in C. The art of scientific computing (http://www.numerical-recipes.com/).
  20. Intel 64 and IA-32 Architectures Optimization Reference Manual (http://download.intel.com/design/processor/manuals/248966.pdf).
  21. Hummer G. The numerical accuracy of truncated Ewald sums for periodic systems with long-range Coulomb interactions // 1995 (http://arxiv.org/pdf/chem-ph/9502004vl).
  22. GROMACS: Fast, Free and Flexible MD (http://www.gromacs.org).
  23. Owens J. Streaming architectures and technology trends // GPU Gems 2. 2005 (http: //download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch29.pdf).
  24. Elsen E., Houston M., Vishal V., Darve E., Hanrahan P., and Pande V. N-body simulation on GPUs // 2006 (http://arxiv.org/pdf/0706.3060).
  25. Belleman R.G., Bedorf J., Zwart S.P. High performance direct gravitational N-body simulations on graphics processing units-II: An implementation in CUDA // 2007 (http://arxiv.org/pdf/0707.0438v2).
  26. Поташников С.И., Боярченков А. С. Атомарные межчастичные потенциалы для моделирования смешанного оксидного ядерного топлива (готовится в печать).
  27. httр://en.wikipеdiа.org/wiki/Amdalil ’s Jaw
  28. http://en.wikipedia.org/wiki/Gustafsoirs_Law
  29. Проект распределенных вычислений Folding@IIome (http://fah-web.Stanford.edu/cgi-bin/main.py?qtype=osstats).
  30. Makino J., Fukushige T., Кода M., Namura K. GRAPE-6: The massively-parallel special-purpose computer for astrophysical particle simulations // Publications of the Astronomical Society of Japan. 2003. 55, N 6 (http://arxiv.org/abs/astro-ph/0310702vl).
  31. DirectX Developer center (http://msdn.microsoft.com/en-us/directx/default.aspx).