Speeding up the solution of coupled heat transfer problems on unstructured meshes

Authors

  • K.N. Volkov

Keywords:

coupled heat transfer
fluid dynamics
finite element method
finite volume method
unstructured mesh

Abstract

Coupled heat transfer problems associated with flows of viscous compressible fluids in a cavity bounded by stationary and rotating walls subject to forced convection are considered. The discretization of the equations describing the fluid flow and a temperature distribution in a solid body, the implementation of a simplified method for calculating the temperature fluid field based on the integration of the temperature equation with the frozen velocity field, the automatic generation of unstructured meshes in the domain occupied by the fluid, and other details of numerical implementation are discussed. The multigrid method and the generalized minimal residual method are used to solve the system of linear algebraic equations obtained after the discretization of Reynolds-averaged Navier-Stokes equations. The possibilities of the approach developed are illustrated by the example of solving some model problems. The results of speeding up the computational algorithm obtained for the full and simplified methods to solve the problem are compared with the results of using various methods of solving linear systems.


Published

2020-11-10

Issue

Section

Section 1. Numerical methods and applications

Author Biography

K.N. Volkov


References

  1. Bohn D.. Kruger UKusterer K. Conjugate lieat, transfer: an advanced computational method for the cooling design of modern gas turbine blades and vanes // Heat Transfer in Gas Turbine. Southampton: WIT Press. 2001. 58-108.
  2. Rigby D.L., Lepicovsky J. Conjugate heat transfer analysis of internally cooled configurations // ASME Paper. 2001. N GT2001-0405.
  3. Okita Y., Yamawaki S. Conjugate heat transfer analysis of turbine rotor-stator systems // ASME Paper. 2002. N GT2002-30615.
  4. Bohn D., Ren J., Kusterer K. Conjugate heat transfer analysis for film cooling configurations with different hole geometries // ASME Paper. 2003. N GT2003-38369.
  5. Kusterer K., Bohn D.. Sugimoto T., Tanaka R. Conjugate calculations for a film-cooled blade under different operating conditions // ASME Paper. 2004. N GT2004-53719.
  6. Lewis L.V., Provins J.I. A non-coupled C’FD-FE procedure to evaluate windage and heat transfer in rotor-stator cavities // ASME Paper. 2004. N GT2004-53246.
  7. Saunders K., Alizadeh S., Lewis L.V., Provins J. The use of CFD to generate heat transfer boundary conditions for a rotor-stator cavity in a compressor drum thermal model // ASME Paper. 2007. N GT2007-28333.
  8. Li H., Kassab A.J. A Coupled FVM/BEM approach to conjugate heat transfer in turbine blades // AIAA Paper. 1994. N 94-1981.
  9. Verdicchio J.A., Chew JAY., Hills N.J. Coupled fluid/solid heat transfer computation for turbine discs // ASME Paper. 2001. N GT2001-0123.
  10. Mirzamoghadam A.V., Xiao Z. Flow and heat transfer in an industrial rotor-stator rim sealing cavity // Journal of Engineering for Gas Turbines and Power. 2002. 124, N 1. 125-132.
  11. Illingworth J., Hills N., Barnes C. 3D fluid-solid heat transfer coupling of an aero-engine preswirl system // ASME Paper. 2005. N GT2005-68939.
  12. Волков K.H. Решение задач сопряженного теплообмена и передача тепловых нагрузок между жидкостью и твердым телом // Вычислительные методы и программирование. 2007. 8, № 2. 116-125.
  13. Dixon J.A., Verdicchio J.A., Benito D., Karl A., Tham K.M. Recent developments in gas turbine component temperature prediction methods, using computational fluid dynamics and optimization tools, in conjunction with more conventional finite element analysis techniques // Power and Energy. 2004. 218, N 4. 241-255.
  14. Sun Z., Chew J.W., Hills N.J., Volkov K.N., Barnes C.J. Efficient FEA/CFD thermal coupling for engineering applications // ASME Paper. 2008. N GT2008-50638.
  15. Zienkiewicz O.C. The finite element method in engineering science. London: McGraw-Hill Education, 1977.
  16. Волков К.Н. Применение метода контрольного объема для решения задач механики жидкости и газа на неструктурированных сетках // Вычислительные методы и программирование. 2005. 6, № 1. 43-60.
  17. Волков К.Н. Пристеночное моделирование в расчетах турбулентных течений на неструктурированных сетках // Теплофизика и аэромеханика. 2007. 14, X 1. 113-129.
  18. Saad Y. Iterative methods for sparse linear systems. Philadelphia: SIAM, 2003.
  19. Barth T.J., Linton S.W. An unstructured mesli Newton solver for compressible fluid flow and its parallel implementation // AIAA Paper. 1995. N 95-0221.
  20. Teekaram A.J. H.. Forth C.J. P., Jones T.V. Film cooling in the presence of mainstream pressure gradients // ASME Journal of Turbomachinery. 1991. 113, N 3. 484-492.
  21. Волков К.Н. Влияние градиента давления и локализованного вдува на турбулентный теплообмен плоской пластины // Теплофизика высоких температур. 2006. 44, № 3. 24-32.
  22. Barnes C. Integration test plan for the SC03 plug-in SC89 // Rolls-Royce Technical Design Report. 2004. N DNS99645.