Stochastic positive P-representation in problems of quantum statistics. Simulation of one-dimensional Bose-gas with delta-repulsion

Authors

  • E.A. Polyakov
  • E.A. Polyakov
  • A.P. Lyubartsev

Keywords:

quantum dynamics
stochastic differential equations
Bose-gas
correlation functions

Abstract

A method of stochastic positive P-representation for the computer simulation of thermal equilibrium and dynamical properties of many-particle quantum systems with interactions is proposed and thoroughly analyzed. The testing procedure of the method includes the evaluation of spatial correlation functions for the one-dimensional Bose-gas with delta-repulsion between particles, both in the state of thermal equilibrium and in the dynamical evolution from a given initial state. This work was supported by the Russian Foundation for Basic Research (project number 08–02–00041) and by the Royal Swedish Academy of Sciences.


Published

2020-11-10

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

E.A. Polyakov

E.A. Polyakov

A.P. Lyubartsev


References

  1. Bruus H., Flensberg K. Many-body quantum theory in condensed matter physics. Oxford: Oxford University Press, 2004.
  2. Garcke J., Griebel M. On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique // J. Comp. Phys. 2000. 165. 694-716.
  3. Fantoni S., Krotscheck E., Fabrocini A. Introduction to modern methods of quantum many-body theory and their applications. Singapore: World Scientific Publishing Company, 2002.
  4. Nightingale M.P., Umrigar C.J. Quantum Monte Carlo methods in physics and chemistry. Berlin: Springer, 1999.
  5. Deuar P., Drummond P.D. Gauge P representations for quantum-dynamical problems: removal of boundary terms // Phys. Rev. A. 2002. 66. 033812.
  6. Drummond P.D., Deuar P., Corney J.F., Kheruntsyan K.V. Stochastic gauge: a new technique for quantum simulations // Proc. of the 16th International Conference on Laser Spectroscopy. Singapore: World Scientific, 2004. 161-170.
  7. Dowling M.R., Davis M.J., Drummond P.D., Corney J.F. Monte Carlo techniques for real-time quantum dynamics // J. Comp. Phys. 2007. 220. 549-567.
  8. Drummond P.D., Deuar P., Kheruntsyan K.V. Canonical Bose gas simulations with stochastic gauges // Phys. Rev. Lett. 2004. 92. 040405.
  9. Yang C.N., Yang C.P. Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction // J. Math. Phys. 1969. 10. 1115-1122.
  10. Görlitz A., Vogels J.M., Leanhardt A.E., Raman C., Gustavson T.L., Abo-Shaeer J.R., Chikkatur A.P., Gupta S., Inouye S., Rosenband T., Ketterle W. Realization of Bose-Einstein condensates in lower dimension // Phys. Rev. Lett. 2001. 87. 130402.
  11. Schreck F., Khaykovich L., Corwin K.L., Ferrari G., Bourdel T., Cubizolles J., Salomon C. Quasipure Bose-Einstein condensate immersed in a Fermi sea // Phys. Rev. Lett. 2001. 87. 080403.
  12. Greiner M., Bloch I., Mandel O., Hänsch T.W., Esslinger T. Exploring phase coherence in a 2D-lattice of Bose-Einstein condensates // Phys. Rev. Lett. 2001. 87. 160405.
  13. Bloch I., Dalibard J., Zwerger W. Many-body physics with ultracold gases // Rev. Mod. Phys. 2008. 80. 885-964.
  14. Olshanii M. Atomic scattering in the presence of an external confinement and a base of impenetrable bosons // Phys. Rev. Lett. 1998. 81. 938-941.
  15. Anderson Jens O. Theory of the weakly interacting Bose gas // Rev. Mod. Phys. 2004. 76. 599-639.
  16. Krauth W., Caffarel M., Bouchaud J.-Ph. Gutzwiller wave function for a model of strongly interacting bosons // Phys. Rev. B. 1992. 45. 3137-3140.
  17. DuBois J.L., Glyde H.R. Natural orbitals and Bose-Einstein condensates in traps: a diffusion Monte Carlo analysis // Phys. Rev. A. 2003. 68. 033602.
  18. Gruter P., Ceperley D. Critical temperature of Bose-Einstein condensation of hard-sphere gases // Phys. Rev. Lett. 1997. 79. 3549-3552.
  19. Penrose O., Onsager L. Bose-Einstein condensation and liquid helium // Phys. Rev. 1956. 104. 576-584.
  20. Dorneich A., Troyer M. Accessing the dynamics of large many-particle systems using stochastic series expansion // Phys. Rev. E. 2001. 64. 066701.
  21. Прокофьев Н.В., Свистунов Б.В., Тупицын И.С. Точный процесс квантового Монте-Карло для статистики дискретных систем // Письма в ЖЭТФ. 1996. 64. вып. 12. 853-858.
  22. Deuar P. First-principles quantum simulations of many-mode open interacting Bose gases using stochastic gauge methods // PhD thesis, University of Queensland. 2005 (eprint arXiv: cond-mat/0507023v1).
  23. Deuar P., Drummond P.D. First-principles quantum dynamics in interacting Bose gases: I. The positive P-representation // J. Phys. A: Math. Gen. 2006. 39. 1163-1181.
  24. Гардинер К.В. Стохастические методы в естественных науках. М.: Мир, 1986.
  25. Wigner E. On the quantum correction for thermodynamic equillibrium // Phys. Rev. 1932. 40. 749-759.
  26. Glauber R.J. The quantum theory of optical coherence // Rhys. Rev. 1963. 130. 2529-2539.
  27. Glauber R.J. Coherent and incoherent states of the radiation field // Phys. Rev. 1963. 131. 2766-2788.
  28. Glauber R.J. Ordered expansions in boson amplitude operators // Phys. Rev. 1969. 177. 1857-1881.
  29. Agarwal G.S., Wolf E. Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators // Phys. Rev. D 1970. 2. 2161-2186.
  30. Agarwal G.S., Wolf E. Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. Quantum mechanics in phase space // Phys. Rev. D 1970. 2. 2187-2205.
  31. Agarwal G.S., Wolf E. Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. III. A generalized Wick theorem and multitime mapping // Phys. Rev. D 1970. 2. 2206-2225.
  32. Troyer M., Wiese U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo similations // Phys. Rev. Lett. 2005. 94. 170201.
  33. Takahashi M., Imada M. Monte Carlo calculation of quantum systems // J. Phys. Soc. Jpn. 1984. 53, N 3. 963-974.
  34. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. III. М.: Физматлит, 2002.
  35. Мессиа А. Квантовая механика. Т. I. М.: Наука, 1979.
  36. Drummond P.D., Gardiner C.W. Generalised P-representations in quantum optics // J. Phys. A: Math. Gen. 1980. 13. 2353-2368.
  37. Фейнман Р. Статистическая механика. М.: Мир, 1978.
  38. Drummond P.D., Mortimer I.K. Computer simulations of multiplicative stochastic differential equations // J. Comp. Phys. 1991. 93. 144-170.
  39. Werner M.J., Drummond P.D. Robust algorithms for solving stochastic partial differential equations // J. Comp. Phys. 1997. 132. 312-326.
  40. Kannan D., Lakshmikanthan V. Handbook of stochastic analysis and applications. Boca Raton: CRC Press, 2002.
  41. Plimak L.I., Olsen M.K., Collet M.J. Optimization of the positive P-representation for the anharmonic oscillator // Phys. Rev. A. 2001. 64. 025801.
  42. Fetter A.L., Walecka J.D. Quantum theory of many-particle systems. New York: McGraw-Hill, 1971.
  43. Yang C.N. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors // Rev. Mod. Phys. 1962. 34. 694-704.
  44. Kheruntsyan K.V., Gangardt D.M., Drummond P.D., Shlyapnikov G.V. Pair correlations in a finite-temperature 1D Bose gas // Phys. Rev. Lett. 2003. 91. 040403.
  45. Sykes A.G., Gangardt D.M., Davis M.J., Viering K., Raizen M.G., Kheruntsyan K.V. Spatial nonlocal pair correlations in a repulsive 1D Bose gas // Phys. Rev. Lett. 2008. 100. 160406.
  46. Gilchrist A., Gardiner C.W., Drummond P.D. Positive P-representation: application and validity // Phys. Rev. A. 1997. 55. 3014.
  47. Deuar P., Drummond P.D. First-principles quantum dynamics in interacting Bose gases II: stochastic gauges // J. Phys. A: Math. Gen. 2006. 39. 2723.
  48. Plimak L.I., Fleishhauer M., Olsen M.K., Collett M.J. Quantum-field-theoretical approach to phase-space techniques: generalizing the positive P-representation // Phys. Rev. A. 2003. 67. 013812.
  49. Carusotto I., Castin Y., Dalibard J. N-boson time-dependent problem: a reformulation with stochastic wave functions // Phys. Rev. A. 2001. 63. 023606.
  50. Plimak L.I., Collett M.J., Olsen M.K. Langevin equations for interacting fermions and Cooper-like pairing in trapped one-dimensional fermions // Phys. Rev. A. 2001. 64. 063409.
  51. Juillet O., Chomaz Ph. Exact stochastic mean-field approach to the fermionic many-body problem // Phys. Rev. Lett. 2002. 88. 142503.
  52. Carusotto I., Castin Y. An exact reformulation of the Bose-Hubbard model in terms of a stochastic Gutzwiller ansatz // New J. Phys. 2003. 5. 91.1-91.13.
  53. Tessieri L., Wilkie J., cCetinbacs M. Exact norm-conserving stochastic time-dependent Hartree-Fock // J. Phys. A: Math. Gen. 2005. 38. 948-956.
  54. Lacroix D. Exact and approximate many-body dynamics with stochastic one-body density matrix evolution // Phys. Rev. C. 2005. 71. 064322.
  55. Montina A., Castin Y. Exact BCS stochastic schemes for a time-dependent many-body fermionic system // Phys. Rev. A. 2006. 73. 013618.