Numerical integration of Poisson's equation using a graphics processing unit with CUDA-technology
Authors
-
N.M. Evstigneev
Keywords:
Poisson's equation
cyclic multigrid method
parallel computing
graphics processing unit
CUDA technology
Abstract
A parallel implementation of the cyclic multigrid method for solving a boundary value problem for Poisson's equation in R3 is discussed for a graphics processor unit using NVIDIA CUDA technology. The results obtained by the graphics processing unit is compared with the analytical solution for the Dirichlet problem and with the numerical CPU-solution for the Dirichlet-Neumann problem. The acceleration of the parallel NVIDIA GeForce 8800 GTX code compared to the AMD Athlon 64X2 4800+ serial code is found to be about 200 times for 1 000 000 discrete elements. Moreover, a 8-core workstation based on two Intel(R) Xeon(R) 2.33HHz CPUs is found to be slower by 40 times than that of the GPU code.
Section
Section 1. Numerical methods and applications
References
- Deuflhard P., Leinen P., Yserentant H. Concepts of an adaptive hierarchical finite element code // Impact Comput. Sci. Eng. 1989. 1. 3-35.
- Shaidurov V.V. Some estimates of the rate of convergence for the cascadic conjugate gradient method // Comput. Math. Appl. 1996. 31. 161-171.
- Shi Z., Xu X. Cascadic multigrid method for elliptic problems // East-West J. Numer. Math. 1999. 3. 199-209.
- Braess D., Dahmen W. A cascadic multigrid algorithm for the Stokes equation // Numer. Math. 1999. 82. 179-191.
- Shi Z., Xu X. Cascadic multigrid method for parabolic problems. Preprint, 1999.
- Bornemann F.A., Krause R. Classical and cascadic multigrid - a methodical comparison // Proc. of the Ninth International Conference on Domain Decomposition. Bergen: Domain Decomposition Press, 1998. 64-71.
- Боярченков А.С., Поташников С.И. Использование графических процессоров и технологии CUDA для задач молекулярной динамики // Вычислительные методы и программирование. 2009. 10, № 1. 13-27.
- http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
- Hyman J.M. Mesh refinement and local inversion of elliptic differential equations // J. Comput. Phys. 1977. 23. 124-134.
- Формалев В.Ф., Ревизников Д.Л. Численные методы. М.: Физматлит, 2006.
- Degenhardt R., Berz M. High accuracy description of the fringe field in particle spectrographs // Nuclear Instruments and Methods. 1999. A427, 151-156.
- http://www.roylongbottom.org.uk/index.htm#anchorNew