Finite difference schemes for integrating the equations for sample particle motion in a fluid or gas flow


  • K.N. Volkov


двухфазные течения
дискретно-траекторный подход
задача Коши
разностные схемы
численные методы


The problems connected with realization of discrete trajectory method of sample particles and some approaches to numerical solution of Cauchy problem for the equations describing the motion of a sample particle and its heat-mass transfer in a fluid or gas flow are considered. Several finite difference schemes taking into account the features of motion of small and large particles as well as finite difference schemes of semianalytic integration for some particular problems are developed. The equations for particle motion in an arbitrary curvilinear frame of reference are given and peculiarities of their integration are discussed.





Section 1. Numerical methods and applications

Author Biography

K.N. Volkov


  1. Нигматулин Р.И. Динамика многофазных сред. Ч. 1. М.: Наука, 1987.
  2. Crowe C.T., Troutt T.R., Chung J.N. Numerical models for two-phase turbulent flows // Annual Review on Fluid Mechanics. 1996. 28. 11-43.
  3. Crowe C.T., Sharma M.P., Stock D.E. The particle-source-in cell (PSI-CELL) model for gas-droplet flows // Journal of Basic Engineering. 1977. 99, N 2. 325-331.
  4. Стернин Л.Е., Шрайбер А.А. Многофазные течения газа с частицами. М.: Машиностроение, 1994.
  5. Rubinow S.I., Keller J.B. The transverse force on a spinning sphere moving in a viscous fluid // Journal of Fluid Mechanics. 1961. 11, N 3. 447-459.
  6. Tsuji Y., Morikawa Y., Mizuno O. Experimental measurement of the Magnus force on a rotating sphere at low Reynolds numbers // Journal of Fluids Engineering. 1985. N 4. 484-488.
  7. Наумов В.А., Соломенко А.Д., Яценко В.П. Влияние силы Магнуса на движение сферического твердого тела при большой угловой скорости // ИФЖ. 1993. 65, № 3. 287-290.
  8. Li A., Ahmadi G. Deposition of aerosols on surfaces in a turbulent channel flow // International Journal of Engineering Science. 1993. 31. 435-451.
  9. Morgan A.J., Barton I.E. Investigation of small numerical instabilities generated by the Lagrangian tracking scheme // Proceedings of the Third ECCOMAS Conference (Barcelona, 11-14 September 2000). 1-15.
  10. Saffman P.G. The lift force on a small sphere in a slow shear flow // Journal of Fluid Mechanics. 1965. 22, N 2. 385-400.
  11. Асмолов Е.С. О движении дисперсной примеси в ламинарном пограничном слое на плоской пластине // Изв. РАН. МЖГ. 1992. № 1. 66-73.
  12. Наумов В.А. Влияние подъемной силы Саффмэна на движение частицы в слое Куэтта // ИФЖ. 1995. 68, № 5. 840-844.
  13. Современные численные методы решения обыкновенных дифференциальных уравнений / Под ред. Дж. Холла и Дж. Уатта. М.: Мир, 1979.
  14. Shih T.I.-P., Dasgupta A. Noniterative implicit method for tracking particles in mixed Lagrangian-Eulerian formulations // AIAA Journal. 1993. 31, N 4. 782-784.
  15. Волков К.Н. Турбулентные течения газовзвеси в каналах со вдувом // Дис. канд. физ.-мат. наук. Санкт-Петербург, 1998.