Solving the dynamical mean-field theory equation on multiprocessor systems

Authors

  • С.Н. Искаков
  • V.V. Mazurenko

Keywords:

dynamical mean-field theory
exact diagonalization
MPI one-sided communication

Abstract

A mechanism of distributed access to multiprocessor computing system resources is proposed for solving the problems of material electron structure analysis.


Published

2020-11-11

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

С.Н. Искаков

V.V. Mazurenko


References

  1. Georges A., Kotliar G. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions // Reviews of Modern Physics. 1996. 68, N 1. 13-125.
  2. Capone M. Solving the dynamical mean-field theory at very low temperatures using the Lanczos exact diagonalization // Physical Review B. 2007. 76, N 24. 245116.
  3. Perroni C.A., Ishida H., Liebsch A. Exact diagonalization dynamical mean-field theory for multiband materials: effect of Coulomb correlations on the Fermi surface of Na_0.3CoO_2 // Physical Review B. 2007. 75, N 4. 045125.
  4. Maschhoff K.J., Sorensen D.C. A portable implementation of ARPACK for distributed memory parallel architectures (http://www.caam.rice.edu/software/ARPACK).
  5. Bunch J.R., Rose D.J. Sparse matrix computations. New York-San Francisco-London: Academic Press, 1976.
  6. MPI: A Message-Passing Interface standard. Message Passing Interface Forum. Knoxville, 2008.
  7. SP Parallel Programming Workshop on Optimization Topic (http://www.mhpcc.edu/training/workshop2/optimization).
  8. Hockney R. The communication challenge for MPP: Intel Paragon and Meiko CS-2 // Parallel Computing. 1994. 20. 389-398.
  9. Chang C.C., Buehrer D.J., Kowng H.C. An improvement to Ziegler’s sparse matrix compression algorithm // J. of Systems and Software. 1996. 35, N 1. 67-71.